
1/3

August 28, 2019

The sad history of Visual Studio’s custom __if_exists
keyword

devblogs.microsoft.com/oldnewthing/20190828-00

Raymond Chen

The Visual Studio C++ compiler has this weird nonstandard keyword called

__if_ exists . (And its twin __if_ not_ exists .) Why does this keyword exist, and

how should I use it?

Let’s get this out of the way: Do not use __if_exists under any circumstances

whatsoever. This is pretty much a direct quote from Stephan T. Lavavej, maintainer of the

Visual C++ implementation of the C++ standard library and overall “person whose opinion

on these sorts of matters you should take under serious consideration.” We’ll come back to

this topic later in the article.

Okay, so where were we? Right, “What’s the deal with __if_ exists ?”

Set the time machine to 1996.

The world was a much more innocent place. People left their doors unlocked at night and

dialed into the Internet over their 28.8 Kb modems to check their AOL account to see if they

got mail, hang out in a chat room, check out Yahoo’s top ten sites of the day, and maybe

download some software.

Well, that last bit is still true today: Some people still download software over the Internet.¹

This was also an era in which developers counted bytes, so minimizing the size of the

download was a big deal. There was this programming language called C++ that hadn’t yet

been standardized, but everybody wanted to use it anyway. Compilers of this era didn’t know

what vectorization was, they didn’t think to defer code generation to link time, and they

didn’t realize that undefined behavior gave them permission to violate the laws of physics.

This was the world that the Active Template Library (ATL) was born into.

The ATL team was obsessed with minimizing code size. They came up with all sorts of ideas

for how the compiler could shrink binary sizes. Some of those features turned out to be really

good ideas that stood the test of time, like __declspec(novtable) .

https://devblogs.microsoft.com/oldnewthing/20190828-00/?p=102812
https://twitter.com/StephanTLavavej
https://devblogs.microsoft.com/oldnewthing/20190827-00/?p=102809
https://devblogs.microsoft.com/oldnewthing/20140627-00/?p=633

2/3

Another of those features was __if_exists . It was, in retrospect, not one of those really

good ideas.

Remember, this was pre-standard C++. Templates existed in rudimentary form. There was

no explicit or partial specialization, no traits types, no template meta-programming, and no

SFINAE. Templates in this era were not much more than macros on steroids.

The compiler folks were cajoled into creating a prototype for the __if_exists feature, and

the ATL team was very pleased with how it turned out. The compiler team wasn’t too excited

about shipping this prototype-quality feature, but the ATL team insisted that it was essential

to making binaries smaller, so the compiler team reluctantly went along with it.

And that’s how __if_exists ended up in the Visual C++ compiler.

Over time, many people got access to high-speed Internet, the C++ language was

standardized, template specialization, template partial specialization, and SFINAE were

invented, and as a result, template meta-programming became possible. If all of these

language features were put into a time machine and sent back to 1996, there would be no

need for __if_exists .

The functionality of the __if_exists feature was permanently frozen to what shipped in

that first prototype, which was itself just good enough to satisfy the immediate needs of the

ATL team. The MSDN documentation was updated to document the specific scenarios that

are known to work well, leaving everything else as undefined.

And if you go look in the ATL code base, it’s not even used very much. The only places you’ll

find it are in the code that was written in that initial release back in 1996. If those classes

needed to be rewritten today for some reason, the replacement would certainly not use

__if_exists .

If you have code that uses __if_exists , you should consider moving to standards-

compliant alternatives. For example, if you’re using __if_exists to compile a block of

code only if a member function exists (which is what ATL uses it for), you can use SFINAE to

do the detection and if constexpr to conditionalize the compilation.

Thanks to my colleague Jonathan Caves for sharing the history behind __if_exists (and

probably undoing several years of therapy in the process).

Bonus chatter: Jonathan tells me that __if_exists is a gift that keeps on giving.

Whenever the Visual C++ team goes in and rewrites their C++ parser to handle new language

features, or simply to make it run better, they have to retrofit __if_exists support into it.

And that’s when they discover some of the truly insane things people have done with it, like

https://twitter.com/joncaves

3/3

putting code inside an __if_exists block that do not even form a complete C++ construct.

The gift has even spread to other compilers: clang 3.0 added support for __if_exists . So

now multiple compiler vendors have therapy bills to pay.

¹ Okay, and some people still access the Internet over dial-up.

Raymond Chen

Follow

http://releases.llvm.org/3.0/docs/ClangReleaseNotes.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

