
1/4

August 22, 2019

The SuperH-3, part 14: Patterns for function calls
devblogs.microsoft.com/oldnewthing/20190822-00

Raymond Chen

Function calls on the SH-3 are rather cumbersome. The BSR instruction has a reach of only

4KB, which makes it impractical for compiler-generated code because the compiler doesn’t

know where the linker is going to put the function it’s calling. In practice, all function calls in

compiler-generated code are performed with the JSR instruction, which calls a function

whose address is given by a register.

The typical case of a direct function call goes like this:

 MOV.L r3, @(16, r15) ; parameter 5 passed on the stack
 MOV r8, r7 ; parameter 4 copied from another register
 MOV #20, r6 ; parameter 3 is address of local variable
 ADD r15, r6 ; r6 = r15 + 20
 MOV #8, r5 ; parameter 2 is calculated in place
 MOV.L #function, r0 ; r0 = function to call
 JSR @r0 ; call the function
 MOV @(24,r15), r4 ; parameter 1 copied from the stack
 ; (in the branch delay slot)

We load the function address into some register. The compiler usually uses one of the non-

parameter scratch registers for this purpose, r0 through r3. Note that we wrote this as a 32-

bit immediate, but that is a pseudo-instruction which the assembler converts to a PC-relative

load, with a constant embedded in the code segment.

 ; You write
 MOV.L #function_address, r0 ; r0 = function to call

 ; Assembler produces
 MOV.L @(n, PC), r0 ; r0 = function to call

 ... around n+4 bytes later ...
 .data.l function_address ; constant stored in code segment

The notation used by the Microsoft SH-3 assembler is that the name of a label is treated as its

address. You don’t need to say offset like you do in the Microsoft 80386 assembler.

https://devblogs.microsoft.com/oldnewthing/20190822-00/?p=102796
https://devblogs.microsoft.com/oldnewthing/20190816-00/?p=102788

2/4

We also prepare the parameters for the call. As we noted when we discussed the calling

convention, the first four parameters go in registers r4 through r7, and the rest go on the

stack.

In practice, the parameters will be prepared in whatever order the compiler finds convenient,

and they will be interleaved with the code that prepares the function address (and with each

other) in order to improve scheduling.

The final instruction for setting up the parameters can go into the branch delay slot, provided

it does not use a PC-relative addressing mode.

 MOV.L #function, r0 ; r0 = function to call
 MOV.L @(24, r15), r5 ; r5 = local variable
 JSR @r0 ; call the function
 MOV.L #large_constant, r4 ; r4 = some large constant
 ^^^^^ ILLSLOT EXCEPTION ; (in the branch delay slot)

The MOV.L #large_constant, r4 will be encoded by the assembler as a PC-relative load,

which is illegal in a branch delay slot. Fortunately, the assembler will not let you do this:

error A151: Can't compute PC displacement in a delay slot

To fix this, you’ll have to move the PC-relative load out of the delay slot, preferably by

swapping it with some instruction that it is not dependent upon.

 MOV.L #function, r0 ; r0 = function to call
 MOV.L #large_constant, r4 ; r4 = some large constant
 JSR @r0 ; call the function
 MOV.L @(24, r15), r5 ; r5 = local variable
 ; (in the branch delay slot)

Calling a function through a global variable function pointer (such as through the import

address table, in the case of a function that was declared as __declspec(import)) involves

two memory accesses, one to get the address of the global variable, and another to get the

code pointer.

 MOV.L #variable, r0 ; r0 = variable that holds the fptr
 MOV.L @r0, r0 ; r0 = the address to call
 JSR @r0 ; call it

Here and in the subsequent examples, I’ve removed the parameter-loading instructions.

Calling a virtual function means getting the function address from the object’s vtable.

 MOV r8, r4 ; r4 = "this" for function call
 MOV.L @r4, r0 ; load vtable pointer into r0
 MOV.L @(n, r0), r0 ; load function pointer from vtable into r0
 JSR @r0 ; call it

3/4

And calling a naïvely-imported function means calling a stub.

 MOV.L #stub_address, r0 ; r0 = pointer to stub function
 JSR @r0 ; call it

 ...
stub:
 MOV.L #__imp__Function, r0 ; r0 = pointer to IAT entry
 MOV.L @r0, r0 ; r0 = the address to call
 JMP @r0 ; and jump there
 NOP ; (branch delay slot)
 .data.l __imp__Function ; address of IAT entry
 ; (constant for first MOV.L instruction)

Our last common pattern for today is the dense switch statement.

 switch (value) {
 case 1: ...
 case 2: ...
 case 3: ...
 case 4: ...
 case 5: ...
 default: ...
 }

 ADD #-1,r4 ; bias by lowest valid value
 MOV #4,r3 ; is it in the range of our jump table?
 CMP/HI r3,r4
 BT default ; N: go to default case
 MOV.L #jump_table, r2 ; get address of jump table
 MOV r4,r0 ; prepare for indexed addressing
 MOV.B @(r0,r2),r0 ; r0 = instruction offset for case
 NOP ; (we'll see more about this nop later)
 BRAF r0 ; jump to appropriate handler
 NOP ; (nothing in the branch delay slot)

 ...
jump_table:
 .data.b 0x0
 .data.b 0x1a
 .data.b 0x2c
 .data.b 0x42
 .data.b 0x78

The code first subtracts the lowest non-default case value, producing an index so that all the

interesting cases are in the range 0 to n for some n. If the value is not in that range, then we

jump to the default: . Otherwise, we use the index as an index into a jump table of bytes,

and use a BRAF instruction to perform a relative jump.

If there is a case label more than 127 bytes away from the BRAF , then the jump table

expands to contain word offsets, and the index needs to be doubled before being looked up.

4/4

 ADD #-1,r4 ; bias by lowest valid value
 MOV #4,r3 ; is it in the range of our jump table?
 CMP/HI r3,r4
 BT default ; N: go to default case
 MOV.L #jump_table, r2 ; get address of jump table
 MOV r4,r0 ; prepare for indexed addressing
 ADD r0,r0 ; convert byte offset to word offset
 MOV.W @(r0,r2),r0 ; r0 = instruction offset for case
 BRAF r0 ; jump to appropriate handler
 NOP ; (nothing in the branch delay slot)

We double the index by adding it to itself (add r0, r0). This is where the extra NOP from

the previous case comes into play. The compiler leaves a NOP in its code generation so it can

choose the size of the jump table later without having to go back and recalculate all its offsets.

In theory the compiler could have emitted the jump table directly into the code rather than

dropping just the address of the jump table, which then needs to be indirected through in

order to access the actual jump table. That has its drawbacks though: You have a potentially

large jump table in your code, which pushes the jump targets further away and makes it more

likely you’re going to need a bigger table. And having the possibility of a variable-sized table

means that the calculation of jump offsets requires multiple passes until all the consequences

have stabilized. It’s easier for the compiler to just generate a pointer to a jump table and

figure out the jump table later.

I guess in theory if there is more than 64KB of code in the switch statement, the jump

table might have to contain longword offsets, and the NOP becomes a SLL2 to scale the

index up so it can access a longword array. I’ve never seen a function so large that this

became an issue, though.

Next time, we’ll wrap up this whirlwind tour of the SH-3 processor by walking through some

actual code.

Raymond Chen

Follow

https://www.youtube.com/watch?v=2I91DJZKRxs&t=33s
https://devblogs.microsoft.com/oldnewthing/20190823-00/?p=102798
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

