
1/4

August 20, 2019

The SuperH-3, part 12: Calling convention and function
prologues/epilogues

devblogs.microsoft.com/oldnewthing/20190820-00

Raymond Chen

The calling convention used by Windows CE for the SH-3 processor looks very much like the

calling convention for other RISC architectures on Windows.

The short version is that the first four parameters (assuming they are all 32-bit integers) are

passed in registers r4 through r7, and the rest go onto the stack after a 16-byte gap. The 16-

byte gap is the home space for the register parameters, and even if a function accepts fewer

than four parameters, you must still provide a full 16 bytes of home space.

More strictly, the first 16 bytes of parameters are passed in registers r4 through r7. If a

parameter is a floating point type, then how it gets passed depends on how the parameter is

declared in the function prototype.

If the floating point type is prototyped as non-variadic, then it goes into the

corresponding register fr4 through fr7, and the integer register goes unused.

If the floating point type is prototyped as variadic, then it stays in the integer register.

If the function has no prototype, then the floating point type goes into both the floating

point register and the integer register.

The reason for this rule is the same as before. Variadic parameters go into integer registers

because the callee doesn’t know what type they are upon function entry. To make things

easier, variadic parameters are always passed in integer registers, so that the callee can just

spill them into the home space and treat them all as stack-based parameters. And

unprototyped functions pass the floating point values in both floating point and integer

registers because it doesn’t know whether the function is going to treat them as variadic or

non-variadic, so it has to cover both bases.

Unlike the Windows calling convention for the MIPS R4000, the Windows calling

convention for the SH-3 does not require 64-bit values to be 8-byte aligned. For example:

void f(int a, __int64 b, int c);

https://devblogs.microsoft.com/oldnewthing/20190820-00/?p=102792
https://blogs.msdn.microsoft.com/oldnewthing/20180417-00/?p=98525

2/4

MIPS Contents SH-3 Contents

a0 a r4 a

a1 unused r5 b

a2 b r6

a3 r7 c

on stack c

On entry to the function, the return address is provided in the pr register, and on exit the

function’s return value is placed in the r0 register. However, if the function’s return value is

larger than 32 bits, then a secret first parameter is passed which is a pointer to a buffer to

receive the return value. The parameters are caller-clean; the function must return with the

stack pointer at the same value it had when control entered.

If the concept of home space offends you, you can think of it as a 16-byte red zone that sits

above the stack pointer.

The stack for a typical function looks like this:

⋮

param 6 (if function accepts more than 4 parameters)

param 5 (if function accepts more than 4 parameters)

param 4 home space

param 3 home space

param 2 home space

param 1 home space ← stack pointer at function entry

saved registers
⋮

saved return address ← stack pointer after saving registers

local variables
⋮

outbound parameters
beyond 4 (if any)

⋮

https://blogs.msdn.microsoft.com/oldnewthing/20190111-00/?p=100685

3/4

param 4 home space

param 3 home space

param 2 home space

param 1 home space ← stack pointer after prologue complete

The function typically starts by pushing onto the stack any nonvolatile registers, as well as its

return address. This takes advantage of the pre-decrement addressing mode. In practice, the

Microsoft C compiler allocates nonvolatile registers starting at r8 and increasing, and

preserves them on the stack in that order, followed by the return address.

In this example, the function has four registers to save, plus the return address.

function_start:
 MOV.L r8, @-r15 ; push r8
 MOV.L r9, @-r15 ; push r9
 MOV.L r10, @-r15 ; push r10
 MOV.L r11, @-r15 ; push r11
 STS.L pr, @-r15 ; push pr

At some point (perhaps not immediately), the function will adjust its stack pointer to create

space for its local variables and outbound parameters. If the function has a small stack frame,

it can use the immediate form of the SUB instruction. Otherwise, it’s probably going to load

a constant into a register and use that as the input to the two-register form of the SUB

instruction.

If the function has a large stack frame, it will be difficult to access variables far away from r15

due to the limited reach of the register indirect with displacement addressing mode. To help

with this problem, the compiler might park the frame pointer register r14 in the middle of the

frame, or at least close to a frequently-used variable, so that it can reach more local variables

in a single instruction.

At the exit of the function, the operations performed in the prologue are reversed: The stack

pointer is adjusted to point to the saved return address, and the saved registers are popped

off the stack. Finally, the function returns with a rts .

 LDS.L @r15+, pr ; pop pr
 MOV.L @r15+, r11 ; pop r11
 MOV.L @r15+, r10 ; pop r10
 MOV.L @r15+, r9 ; pop r9
 RTS ; return
 MOV.L @r15+, r8 ; pop r8 (in the delay slot)

4/4

Lightweight leaf functions are those which call no other functions and which can accomplish

their task using only volatile registers and the 16 bytes of home space. Such functions may

not modify the pr register or any nonvolatile registers (which includes the stack pointer).

Next time, we’ll look at some code patterns you’ll see in the compiler-generated code, y’know,

the stuff that goes inside the function. We’ll start with misaligned data.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190821-00/?p=102794
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

