
1/2

August 9, 2019

The SuperH-3, part 5: Multiplication
devblogs.microsoft.com/oldnewthing/20190809-00

Raymond Chen

Last time, we looked at simple addition and subtraction. Now let’s look at multiplication.

Multiplication operations report their results in a pair of 32-bit registers called called MACH

and MACL, which collectively form a 64-bit virtual register known as MAC (multiply and

accumulate).

We start with the simple multiplication operations.

 MUL.L Rm, Rn ; MACL = Rm * Rn, no effect on MACH
 MULS.W Rm, Rn ; MACL = (int16_t)Rm * (int16_t)Rn, no effect on MACH
 MULU.W Rm, Rn ; MACL = (uint16_t)Rm * (uint16_t)Rn, no effect on MACH

The .W operations treat the two source operands as 16-bit values, either signed or unsigned,

and store the 32-bit result into MACL. The MUL.L treats the source operands as full 32-bit

values, and produces a 32-bit result in MACL. (It doesn’t matter whether the sources are

considered signed or unsigned because the lower 32 bits of the result are the same either

way.)

The next instructions produce 64-bit results.

 DMULS.L Rm, Rn ; MAC = Rn * Rm, signed 32x32→64 multiply
 DMULU.L Rm, Rn ; MAC = Rn * Rm, unsigned 32x32→64 multiply

 MAC.L @Rm+, @Rn+ ; MAC += @Rm++ * @Rn++, signed 32x32→64 multiply
 MAC.W @Rm+, @Rn+ ; MAC += @Rm++ * @Rn++, signed 16x16→64 multiply

The MAC.x instructions are interesting in that they access two memory locations in one

instruction. Both Rm and Rn are treated as addresses, 16-bit or 32-bit values are loaded from

those addresses, the loaded values are treated as signed integers, multiplied together, and the

result added to the 64-bit accumulator register MAC, and finally the registers are

incremented by the operand size. The design of the instruction is evidently for performing a

dot product of two vectors.

https://devblogs.microsoft.com/oldnewthing/20190809-00/?p=102776
https://devblogs.microsoft.com/oldnewthing/20190808-00/?p=102774

2/2

There’s an additional wrinkle to the MAC.x instructions: If you set the S flag, then the

operations use saturating addition rather than wraparound addition. For MAC.L , the

saturation is as a 48-bit value, and the value is sign-extended to a 64-bit value in MAC. For

MAC.W , the saturation is as a 32-bit value, and the bottom bit of MACH is set to 1 if an

overflow occurred.

In practice, of these multiplication instructions, you will likely see only MUL.L in compiler-

generated code.

Oh wait, how do you get the answers out of the MAC registers? Yeah, there are instructions

for that too.

 CLRMAC ; MAC = 0

 LDS Rm, MACH ; MACH = Rm
 LDS Rm, MACL ; MACL = Rm
 LDS.L @Rm+, MACH ; MACH = @Rm+
 LDS.L @Rm+, MACL ; MACL = @Rm+

 STS MACH, Rn ; Rn = MACH
 STS MACL, Rn ; Rn = MACL
 STS.L MACH, @-Rn ; @-Rn = MACH
 STS.L MACL, @-Rn ; @-Rn = MACL

The CLRMAC instruction sets MAC to zero, which is a good starting point for subsequent

MAC.x instructions.

The LDS instructions move values into the MAC registers. You can move a value directly

from a register or load it (with post-increment) from memory. Conversely, the STS

instructions move values out of the MAC registers, either into a general-purpose register or

into memory.

Next up is integer division, which is going to be interesting.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190812-00/?p=102778
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

