
1/3

August 8, 2019

The SuperH-3, part 4: Basic arithmetic
devblogs.microsoft.com/oldnewthing/20190808-00

Raymond Chen

Okay, we’re ready to do some arithmetic. Due to the limited instruction encoding space, there

isn’t room for any three-operand instructions.¹ All of the arithmetic instructions are two-

operand, where the second source operand also acts as the destination.

 ADD Rm, Rn ; Rn += Rm , no effect on T
 ADD #imm, Rn ; Rn += imm , no effect on T
 ADDC Rm, Rn ; Rn += Rm + T, T receives carry
 ADDV Rm, Rn ; Rn += Rm , T receives signed overflow

The ADD instructions add two values and put the result in the second register. You can add

two registers together, or you can add a signed 8-bit immediate to the destination register.

The ADDC instruction treats the T flag as a carry flag: It is added to the sum, and it receives

the carry of the result.

The ADDV instruction treats the T flag as an overflow flag: It reports whether a signed

overflow occurred.

Okay, subtraction is going to look really similar now.

 SUB Rm, Rn ; Rn -= Rm , no effect on T
 SUB #imm, Rn ; Rn -= imm , no effect on T
 SUBC Rm, Rn ; Rn -= Rm + T, T receives borrow
 SUBV Rm, Rn ; Rn -= Rm , T receives signed underflow

Basically the same as addition, except you’re now subtracting. The SH-3 treats T as a borrow

flag in the case of SUBC , whereas for SUBV it reports whether a signed underflow occurred.

Arithmetic negation is up next.

 NEG Rm, Rn ; Rn = -Rm , no effect on T
 NEGC Rm, Rn ; Rn = -Rm - T, T receives borrow

There is no NEGV , but overflow occurs only if the value is 0x80000000 , so I guess you

could test for that value specifically.

https://devblogs.microsoft.com/oldnewthing/20190808-00/?p=102774

2/3

There is a special instruction for for decrementing a register:

 DT Rn ; Rn = Rn - 1, T = (Rn == 0)

The decrement and test instruction decrements a register and compares the result against

zero. This is presumably for counted loops.

Next come the comparison instructions.

 CMP/EQ #imm, r0 ; T = (r0 == signed 8-bit immediate)
 CMP/EQ Rm, Rn ; T = (Rn == Rm)
 CMP/HS Rm, Rn ; T = (Rn ≥ Rm), unsigned comparison
 CMP/GE Rm, Rn ; T = (Rn ≥ Rm), signed comparison
 CMP/HI Rm, Rn ; T = (Rn > Rm), unsigned comparison
 CMP/GT Rm, Rn ; T = (Rn > Rm), signed comparison
 CMP/PZ Rn ; T = (Rn ≥ 0), signed comparison
 CMP/PL Rn ; T = (Rn > 0), signed comparison
 CMP/STR Rm, Rn ; T = 1 iff any corresponding bytes are equal

These instructions set the T flag according to a particular comparison. Note that the

comparison is backward! For example, CMP/GE r1, r2 does not check whether r1 ≥ r2;

rather, it checks whether r2 ≥ r1. This takes a lot of getting used to.

You have the special ability to compare r0 for equality with a signed 8-bit immediate.

Otherwise, you can compare two registers against each other, or a register against zero.

The special CMP/STR compares two registers to determine whether any of the four

component bytes are equal. It’s clear from the mnemonic that the intended purpose is to

search for a null terminator in a string. You set Rn to zero and then do a CMP/STR against

every longword in the string until it says, “Hey, I found a zero byte!” and then you can study

that longword to see where the zero byte is.

The processor documentation doesn’t explain why they chose the names for the mnemonics,

but I can guess.

Condition Meaning

EQ equal

HS high or same

GE greater or equal

HI high

GT greater than

PZ plus or zero

3/3

PL plus

STR string

It took me a while to come up with a plausible explanation for HS .

Exercise 1: Synthesize the SETT and CLRT instructions.

Exercise 2: Perform the opposite of the MOVT instruction: Set the T register to 0 if a

register is zero, or 1 if the register is nonzero.

The last arithmetic instructions are the extension instructions.

 EXTS.B Rm, Rn ; sign extend byte in Rm to Rn
 EXTS.W Rm, Rn ; sign extend word in Rm to Rn
 EXTU.B Rm, Rn ; zero extend byte in Rm to Rn
 EXTU.W Rm, Rn ; zero extend word in Rm to Rn

That’s it for the basic arithmetic instructions. We’ll start looking at the more complicated

arithmetic instructions next time, starting with multiplication.

¹ Well, okay, you can have three-operand instructions if some of them are hard-coded! But

that’s not what I mean. I mean three-operand instructions where the programmer can choose

all three of the operands.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190809-00/?p=102776
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

