
1/4

August 5, 2019

The SuperH-3, part 1: Introduction
devblogs.microsoft.com/oldnewthing/20190805-00

Raymond Chen

Windows CE supported the Hitachi SuperH-3 and SuperH-4 processors. These were

commonly abbreviated SH-3 and SH-4, or just SH3 and SH4, and the architecture series was

known as SHx.

I’ll cover the SH-3 processor in this series, with some nods to the SH-4 as they arise. But the

only binaries I have available for reverse-engineering are SH-3 binaries, so that’s where my

focus will be.

The SH-3 is the next step in the processor series that started with the SH-1 and SH-2. It was

succeeded by the SH-4 as well as the offshoots SH-3e and SH-3-DSP. The SH-4 is probably

most famous for being the processor behind the Sega Dreamcast.

As with all the processor retrospective series, I’m going to focus on how Windows CE used

the processor in user mode, with particular focus on the instructions you will see in compiled

code.

The SH-3 is a 32-bit RISC-style (load/store) processor with fixed-length 16-bit instructions.

The small instruction size permits higher code density than its contemporaries, with Hitachi

claiming a code size reduction of a third to a half compared to processors with 32-bit

instructions. The design was apparently so successful that ARM licensed it for their Thumb

instruction set.

The SH-3 can operate in either big-endian or little-endian mode. Windows CE uses it in

little-endian mode.

The SH-3 has sixteen general-purpose integer registers, each 32 bits wide, and formally

named r0 through r15. They are conventionally used as follows:

Register Meaning Preserved?

r0 return value No

r1 No

https://devblogs.microsoft.com/oldnewthing/20190805-00/?p=102749
https://www.hpcfactor.com/support/windowsce/wce2.asp
https://lwn.net/Articles/647636/

2/4

r2 No

r3 No

r4 argument 1 No

r5 argument 2 No

r6 argument 3 No

r7 argument 4 No

r8 Yes

r9 Yes

r10 Yes

r11 Yes

r12 Yes

r13 Yes

r14, aka fp frame pointer Yes

r15, aka sp stack pointer Yes

We’ll learn more about the conventions when we study calling conventions.

There are actually two sets (banks) of the first eight registers (r0 through r7). User-mode

code uses only bank 0, but kernel mode can choose whether it uses bank 0 or bank 1. (And

when it’s using one bank, kernel mode has special instructions available to access the

registers from the other bank.)

The SH-3 does not support floating point operations, but the SH-4 does. There are sixteen

single-precision floating point registers which are architecturally named fpr0 through fpr15,

but which the Microsoft assembler calls fr0 through fr15. They can be paired up to produce

eight double-precision floating point registers:

Double-precision register Single-precision register pair

dr0 fr0 fr1

dr2 fr2 fr3

dr4 fr4 fr5

https://devblogs.microsoft.com/oldnewthing/20190820-00/?p=102792

3/4

dr6 fr6 fr7

dr8 fr8 fr9

dr10 fr10 fr11

dr12 fr12 fr13

dr14 fr14 fr15

If you try to perform a floating point operation on an SH-3, it will trap, and the kernel will

emulate the instruction. As a result, floating point on an SH-3 is very slow.

Windows NT requires that the stack be kept on a 4-byte boundary. I did not observe any red

zone.

There are also some special registers:

Register Meaning Preserved? Notes

pc program counter duh instruction pointer, must be
even

gbr global base register No bonus pointer register

sr status register No Flags

mach multiply and accumulate
high

No For multiply-add operations

macl multiply and accumulate low No For multiply-add operations

pr procedure register Yes Return address

Some calling conventions for the SH-3 say that mach and macl are preserved, or that gbr is

reserved, but in Windows CE, they are all scratch.

We’ll take a closer look at the status register later.

The architectural names for data sizes are as follows:

byte: 8-bit value

word: 16-bit value

longword: 32-bit value

quadword: 64-bit value

https://devblogs.microsoft.com/oldnewthing/20190807-00/?p=102769

4/4

Unaligned memory accesses will fault. We’ll look more closely at unaligned memory access

later.

The SH-3 has branch delay slots. Ugh, branch delay slots. What’s worse is that some branch

instructions have branch delay slots and some don’t. Yikes! We’ll discuss this in more detail

when we get to control transfer.

Instructions on the SH-3 are generally written with source on the left and destination on the

right. For example,

 MOV r1, r2 ; move r1 to r2

The SH-3 can potentially retire two instructions per cycle, although internal resource

conflicts may prevent that. For example, an ADD can execute in parallel with a comparison

instruction, but it cannot execute in parallel with a SUB instruction. In the case of a resource

conflict, only one instruction is retired during that cycle.

After an instruction that modifies flags, the new flags are not available for a cycle, and after a

load instruction, the result is not available for two cycles. There are other pipeline hazards,

but those are the ones you are likely to encounter. If you try to use the results of a prior

instruction too soon, the processor will stall. (Don’t forget that the SH-3 is dual-issue, so two

cycles can mean up to four instructions.)

Okay, that’s enough background. We’ll dig in next time by looking at addressing modes.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190821-00/?p=102794
https://devblogs.microsoft.com/oldnewthing/20190816-00/?p=102788
https://devblogs.microsoft.com/oldnewthing/20190806-00/?p=102752
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

