
1/2

July 29, 2019

Is it a good idea to let WriteProcessMemory manage the
page protection for me?

devblogs.microsoft.com/oldnewthing/20190729-00

Raymond Chen

Some time ago, I noted that the WriteProcessMemory function will make a page read-write if

necessary, as a courtesy to debuggers who want to use it to patch code. Is this something you

should rely on?

No, it’s not something you should rely on. It is a courtesy, not contractual, and courtesies can

go away at any time.

As I noted in the article, the courtesy itself can create problems. It creates a race condition

where the courtesy page protection change can collide with an actual page protection change

in the program, causing one or the other to be lost.

App thread WriteProcessMemory

 if (page-is-read-only) {

 make-page-read-write;

 write-the-data;

change-protection-to-read-execute;

 restore-original-protection;

}

The WriteProcessMemory function noticed that the page was write-protected, so it

changed the page to read-write, wrote the data, and then changed it back to read-only. But at

the same time, the application changed the protection from read-only to read-execute,

Unfortunately, that change was overwritten by the WriteProcessMemory function when it

tried to restore the original protection. The result: When the app tries to execute code on the

page, it gets a no-execute exception.

You can imagine other race conditions. For example, the app thread could change the

protection to read-execute one step earlier, after the WriteProcessMemory function

changed it to read-write, but before it could write the data. (In that case, the WriteProcess‐

https://devblogs.microsoft.com/oldnewthing/20190729-00/?p=102737
https://devblogs.microsoft.com/oldnewthing/20181206-00/?p=100415

2/2

Memory function reports that the write operation failed.) Or perhaps the app thread changed

the protection to read-execute two steps earlier, afer the WriteProcessMemory function

realized that the page was read-only but before it could change it to read-write.

These are all bad things, where the WriteProcessMemory function tried to be unobstrusive

but ended up interfering with the operation of the program beyond simply writing memory.

You should try to avoid bad things.

As noted, the intended audience for the WriteProcessMemory function was debuggers, and

when debuggers patch process memory, they do so when the process is broken into the

debugger, hence no app threads can be running. The race condition doesn’t exist in that case.

If you’re going to use the WriteProcessMemory function to write to memory of a live

running process, you need to coordinate with that process to make sure your memory write

operation won’t collide with the app’s own virtual memory operations.

Bonus chatter: As I noted, this behavior of the WriteProcessMemory function is a

courtesy, not contractual. Windows 95 and Windows CE dealt with the problem differently:

Instead of making the page temporarily read-write, they made the page permanently read-

write. In other words, they didn’t bother restoring the original page protections when they

were done. They just left the page read-write.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

