
1/2

July 18, 2019

After I made my DLL delay-load another DLL, my DLL has
started crashing in its process detach code

devblogs.microsoft.com/oldnewthing/20190718-00

Raymond Chen

A customer had a DLL, let’s call it CONTOSO.DLL , and that DLL linked to another DLL, let’s

call it WIDGET.DLL . To improve DLL load time, they made WIDGET.DLL a delay-loaded

DLL via the /DELAYLOAD linker option. This worked out great, except that sometimes their

DLL crashed when shutting down.

When the WIDGET.DLL was a static dependency, the loader made a note to ensure that

WIDGET.DLL was loaded and ready before calling CONTOSO.DLL ‘s initialization function,

and made sure that WIDGET.DLL remained valid until CONTOSO.DLL completed its

uninitialization.

Switching the WIDGET.DLL to a /DELAYLOAD DLL removes this static dependency, and the

loader isn’t around to help any more.

When the process shuts down, the loader uninitializes the DLLs in an order that tries¹ to

preserve the static dependencies, so that a DLL waits until all its dependents are uninitialized

before itself uninitializing. However, the loader does not have insight into dynamically-

created dependencies, and the DLLs may unload out of order.

What happened is that CONTOSO.DLL initialized without WIDGET.DLL , and then later

somebody needed a widget, so it loaded WIDGET.DLL and did some widget stuff, and then

cached the widget so it wouldn’t have to go through all that nonsense again.

In the CONTOSO.DLL module’s DLL_PROCESS_DETACH code, it checks² if there is a cached

widget, and if so, destroys it.

WIDGET.DLL was a dynamic dependency, the module loader doesn’t take it into account

when calculating the order in which modules should be uninitlalized. The loader sees no

static dependency between CONTOSO.DLL and WIDGET.DLL , so the order in which they

uninitialize is arbitrary.

And if the arbitrary decision ends up selecting WIDGET.DLL to uninitialize first, then you

have a crash when CONTOSO.DLL tries to call into an already-uninitialized DLL.

https://devblogs.microsoft.com/oldnewthing/20190718-00/?p=102719
https://docs.microsoft.com/en-us/cpp/build/reference/delayload-delay-load-import
https://devblogs.microsoft.com/oldnewthing/20050523-05/?p=35573

2/2

Note that this problem occurs only at process shutdown. If CONTOSO.DLL unloads via a

runtime call to Free Library , it will still be able to call into WIDGET.DLL because it hasn’t

yet called Free Library on WIDGET.DLL . But during process shutdown, the module loader

needs to free all the things, and the outstanding Load Library won’t prevent that from

happening.

The solution is to bypass widget cleanup if the DLL_PROCESS_DETACH handler realizes that

the process is terminating. Just leak the widget. The building is being demolished. You don’t

need to sweep the floors.

The DLL was able to start without the widget DLL. It should be able to finish without the

widget DLL.

¹ I say “tries” because circular dependencies make such an effort impossible to achieve, but

the loader does the best it can.

² It’s important to check for evidence of widgets before trying to clean up widget-related

things. Otherwise, you may end up loading a DLL in your DLL_PROCESS_DETACH handler, and

that’s not good.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20120105-00/?p=8683
https://devblogs.microsoft.com/oldnewthing/20100115-00/?p=15253
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

