
1/4

July 10, 2019

Detecting in C++ whether a type is defined, part 3:
SFINAE and incomplete types

devblogs.microsoft.com/oldnewthing/20190710-00

Raymond Chen

Warning to those who got here via a search engine: This is part of a series. Keep

reading to the end.

For the past few articles, I’ve been playing with the unqualified name lookup search order in

order to detect whether a type exists in a particular namespace. I did this by defining the type

in another namespace that has lower priority than the namespace that I’m probing, and then

seeing which type comes out when I access the type with an unqualified name.

There are many problems with this technique. One is that it requires you to set up a detect

namespace that contains a shadow version of every type you want to check. Another is that

you need to inject a detect sub-namespace into every namespace you want to do detection

in.

But it turns out there’s another way, as long as you’re willing to change one of the

requirements. Instead of checking whether the type exists, check whether the type is defined,

which in C++ language standard jargon means that you want the type to be complete.

template<typename, typename = void>

constexpr bool is_type_complete_v = false;

template<typename T>

constexpr bool is_type_complete_v

 <T, std::void_t<decltype(sizeof(T))>> = true;

A type must be complete in order to have the sizeof operator applied to it, so we use

SFINAE to define is_ type_ complete_v as true provided the sizeof operator can

be applied.¹

I’m not sure if this is technically legal, but all the compilers I tried seemed to be okay with it.

It does lead to weird effects like this:

https://devblogs.microsoft.com/oldnewthing/20190710-00/?p=102678
https://en.cppreference.com/w/cpp/language/unqualified_lookup
https://en.cppreference.com/w/cpp/language/type#incomplete_type
https://en.cppreference.com/w/cpp/language/sfinae

2/4

struct s; // incomplete type

bool val1 = is_type_complete_v<s>; // false

struct s {}; // now it's complete

bool val2 = is_type_complete_v<s>; // true

The second phase of the trick takes advantage of the fact that you are permitted to refer to a

class with the struct or class prefix. This prefix is usually redundant, but not always.

It’s also how you declare a forward reference.

The result is that you can say

is_type_complete_v<struct special>

to determine whether struct special has been defined.

1. If it has been defined, then the type exists and is complete.

2. If it has been declared but not defined, then the type exists and is incomplete.

3. If it has been neither declared nor defined, the act of writing struct special serves

as a declaration! This puts us back into case 2 above, and the type exists and is

incomplete.

So now our helper can be simplified to

template<typename T, typename TLambda>

void call_if_defined(TLambda&& lambda)

{

 if constexpr (is_complete_type_v<T>) {

 lambda(static_cast<T*>(nullptr));

 }

}

and you would use it like this:

void foo(Source source)

{

 call_if_defined<struct special>([&](auto* p)

 {

 using special = std::decay_t<decltype(*p)>;

 special::static_method();

 auto s = source.try_get<special>();

 if (s) s->something();

 });

}

We are using the same tricks that we introduced last time: Using a generic lambda to defer

resolving the type until the lambda is invoked, using if constexpr to avoid invoking the

lambda if the type is not defined, and reintroducing the name of the type by deriving it from

the dummy parameter.

https://devblogs.microsoft.com/oldnewthing/20190419-00/?p=102431

3/4

There is a catch here: If you are probing for a type that is defined in a namespace that you

imported via a using directive, and the type does not actually exist, then the struct

special will declare an incomplete struct special in the current namespace.

// awesome.h

namespace awesome

{

 // might or might not contain

 struct special { ... };

}

// your code

namespace app

{

 using namespace awesome;

 void foo()

 {

 call_if_defined<struct special>([&](auto* p)

 {

 ...

 });

 }

}

If special is not defined, then the struct special in the call_ if_ defined will

introduce an incomplete type called app:: special .

Even more frustrating is that you cannot do this:

namespace app

{

 void foo()

 {

 call_if_defined<struct awesome::special>([&](auto* p)

 {

 ...

 });

 }

}

You cannot forward-declare a type into a non-current namespace. (For one thing, the result

is ambiguous: Is this trying to forward-declare ::awesome ::special , or is it trying to

forward-declare ::app ::awesome ::special ?)

And of course there’s the annoyance of having to type the word struct .

We can trade three annoyances for one. We’ll continue the investigation next time.

4/4

¹ The std:: void_t template type is void regardless of its template parameters. The

template type exists specifically for SFINAE, so that the overload is removed from

consideration if the template parameter ends up being invalid. In this case, what it means is

that if sizeof(T) is invalid (which is the case if T is an incomplete type), then the

std:: void_t fails substitution, and the rule disappears.

You can think of it as std:: void_ if_ valid_t .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

