
1/3

May 24, 2019

Windows Runtime delegates and object lifetime in
C++/WinRT

devblogs.microsoft.com/oldnewthing/20190524-00

Raymond Chen

In C++/WinRT, there are four ways to create delegates for event handlers:

As a raw pointer with a method pointer.

As a strong pointer with a method pointer.

As a weak pointer with a method pointer.

As a lambda.

// raw pointer with method pointer.
MyButton.Event({ this, &AwesomePage::Button_Click });

// strong pointer with method pointer.
MyButton.Event({ get_strong(), &AwesomePage::Button_Click });

// weak pointer with method pointer.
MyButton.Event({ get_weak(), &AwesomePage::Button_Click });

// lambda.
MyButton.Event([...](auto&& sender, auto&& args) { ... });

The first three are all very similar. They call the method on the object. The only difference is

how they obtain the object.

Raw pointer: The method is invoked on the raw pointer.

Strong pointer: The method is invoked on the strong pointer.

Weak pointer: The weak pointer is resolved to a strong pointer. If successful, the

method is invoked on the strong pointer. If unsuccessful, nothing happens.¹

The lambda case is the same as always: The lambda is invoked. It is up to the lambda to

determine what objects were captured, how they were captured, and what happens when the

lambda is invoked.

The tricky part is deciding which of these mechanisms is most appropriate for your use case.

https://devblogs.microsoft.com/oldnewthing/20190524-00/?p=102516

2/3

Use the strong pointer if you need the object referenced by the strong pointer to remain alive

for as long as the event handler is registered. This is not a common scenario; usually, you are

keeping the object alive by other means.

Before discussing the scenarios where you would use the weak or raw pointer, let’s think

about the problems these options are trying to solve.

The underlying problem is the event that is raised after the object has been destructed. Can

you guarantee that this will not happen? If you can guarantee it, then you can use a raw

pointer. If you cannot guarantee it, then you must use a weak pointer. (If you’re not sure, it is

always okay to use a weak pointer.)

Under what conditions can you guarantee that the event won’t be raised after the object has

been destructed? Well, one obvious requirement is that you have to stop the event handler

from being invoked. The standard way of doing this is by unregistering the event handler. A

less common way is destroying the event source. (It’s less common because it assumes that

nobody else has taken a reference to the event source and is thereby keeping it alive!)

Preventing the event source from calling your handler is completely on you, so let’s assume

you remember to do that, and that you do it correctly.

Even if you remember to unregister the event handler, it’s possible to receive an event after

unregistering if the event can be raised from another thread, There’s an unavoidable race

condition, because the event may be in flight at the time you unregister the handler. The only

way to be sure that you won’t receive any events after unregistering is when the event is

always raised from the thread doing the unregistering. This guarantee is available only for

objects with thread affinity, and in the cases where the event is raised synchronously in

response to the event trigger. In practice, this means that you have this guarantee only for UI

objects, such as XAML elements.

Okay, so now that we understand the scenarios, we can write the guidance.

If the event source has thread affinity (typical of UI objects), then you have the option of

using either the weak pointer or raw pointer version. The raw pointer is more efficient, but it

counts on you having done your analysis correctly. And of course when your object is

destroyed, you have to remember to stop the event handler from being invoked.

Use the weak pointer for all the other cases where you are choosing between a weak pointer

and a raw pointer, namely if the event source does not have thread affinity, which basically

means that the event source is not a UI object.

When an event handler is created via XAML markup, the resulting delegate is created with a

raw pointer and method pointer.

3/3

<!-- XAML -->
<Page x:Name="AwesomePage" ...>
 ...
 <Button Click="Button_Click" >
 ...
</Page>

When you write the above XAML, the delegate is created as if you had written

thatButton.Click({ this, &AwesomePage::Button_Click });

The XAML compiler knows that it’s safe to do this because it’s hooking up the handler to a

XAML element, which is a UI object with thread affinity. It therefore knows that it can

unregister its handlers at destruction without risk of events coming in late.

Additional reading:

¹ Note that the “nothing happens” also means that it doesn’t even return the magic

RPC_ E_ DISCONNECTED error code to tell the event source that the handler is

permanently dead.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190521-00/?p=102505
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

