
1/2

May 3, 2019

Async-Async: Consequences for exceptions
devblogs.microsoft.com/oldnewthing/20190503-00

Raymond Chen

As we’ve been learning, the feature known as Async-Async makes asynchronous operations

even more asynchronous by pretending that they started before they actually did. The effect

of Async-Async is transparent to properly-written applications, but if you have been breaking

the rules, you may notice some changes to behavior. Today we’ll look at exceptions.

// Code in italics is wrong.

Task task1 = null;
Task task2 = null;
try
{
 task1 = DoSomethingAsync(arg1);
 task2 = DoSomethingAsync(arg2);
}
catch (ArgumentException ex)
{
 // One of the arguments was invalid.
 return;
}

// Wait for the operations to complete.
await Task.WhenAll(task1, task2);

This code “knows” that the invalid parameter exception is raised as part of initiating the

asynchronous operation, so it catches the exception only at that point.

With Async-Async, the call to Do Something Async returns a fake IAsync Operation

immediately, before sending the call to the server. If the server returns an error in response

to the operation, it’s too late to report that error to the client as the return value of Do ‐

Something Async . Because, y’know, time machine.

The exception is instead reported to the completion handler for the IAsync Operation . In

the above case, it means that the exception is reported when you await the task, rather

than when you create the task.

https://devblogs.microsoft.com/oldnewthing/20190503-00/?p=102473

2/2

try
{
 Task task1 = DoSomethingAsync(arg1);
 Task task2 = DoSomethingAsync(arg2);

 // Wait for the operations to complete.
 await Task.WhenAll(task1, task2);
}
catch (ArgumentException ex)
{
 // One of the arguments was invalid.
 return;
}

Again, this is not something that should affect a properly-written program, because you don’t

know when the server is going to do its parameter validation. It might do parameter

validation before creating the IAsync Operation , or it might defer doing the parameter

validation until later for performance reasons. You need to be prepared for the exception to

be generated at either point.

In practice, this is unlikely to be something people stumble across because Windows

Runtime objects generally reserve exceptions for fatal errors, so you have no need to try to

catch them.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190228-00/?p=101074
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

