
1/14

April 29, 2019

Spotting problems with destructors for C++ temporaries
devblogs.microsoft.com/oldnewthing/20190429-00

Raymond Chen

Consider the unique_handle. It specializes std:: unique_ ptr to support Windows

kernel handles. It lets you get all the niceties of std:: unique_ ptr with just a handful of

lines of code.

But then you have the problem of interoperating with the rest of the system. For example,

how would you use a unique_ handle to receive the result of a duplication?

unique_handle originalHandle = ...;
unique_handle duplicateHandle;

if (DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), &duplicateHandle,
 0, FALSE, DUPLICATE_SAME_ACCESS)) { ... }

This doesn’t compile because the operator& for a unique_ ptr doesn’t give you a

pointer to the inner raw pointer. You’ll have to perform the operation in two steps.

HANDLE rawDuplicateHandle = nullptr;

// First, get a raw handle as the duplicate.
auto result = DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), &rawDuplicateHandle,
 0, FALSE, DUPLICATE_SAME_ACCESS);

// Then set it into the smart pointer.
duplicateHandle.reset(rawDuplicateHandle);

// Then see if it worked.
if (result) { ... }

We could tune this a little:

https://devblogs.microsoft.com/oldnewthing/20190429-00/?p=102456
https://devblogs.microsoft.com/oldnewthing/20180831-00/?p=99625

2/14

HANDLE rawDuplicateHandle;

// Out with the old.
duplicateHandle.reset();

// Try to get a new handle.
if (DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), &rawDuplicateHandle,
 0, FALSE, DUPLICATE_SAME_ACCESS)) {

 // Save the new handle back into the smart pointer.
 duplicateHandle.reset(rawDuplicateHandle);

 ...
}

But the underlying issue remains: Bridging the gap between the C++ unique_ ptr and the

system function that wants you to pass the address of a HANDLE .

You might decide to create a helper class whose job is to encapsulate this two-step dance,

acting as a proxy between the raw handle and the smart pointer.

struct handle_proxy
{
 handle_proxy(unique_handle& output)
 : m_output(output) { }

 ~handle_proxy() { m_output.reset(m_rawHandle); }

 HANDLE* addressof() { return &m_rawHandle; }

 // Not copyable, not movable.
 handle_proxy(const handle_proxy&) = delete;
 handle_proxy& operator=(const handle_proxy&) = delete;

 unique_handle& m_output;
 HANDLE m_rawHandle = nullptr;
};

This proxy object lets you pass a HANDLE* to functions that return a handle through a

pointer, and when the proxy is destructed, it transfers the raw handle into the smart pointer.

DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle).addressof(),
 0, FALSE, DUPLICATE_SAME_ACCESS);

What’s happening here is that we create a temporary handle_ proxy object to pass to the

Duplicate Handle function. This temporary object remembers the unique_ handle that

it is proxying for, and produces the address of a plain old HANDLE which is what gets passed

3/14

to the to the Duplicate Handle function. After the Duplicate Handle function returns,

the temporary is destructed, and the destructor takes the raw handle in m_rawHandle and

puts it into the smart pointer.

As a convenience, you could add a conversion operator to save people the hassle of having to

say addressof all over the place.

struct handle_proxy
{
 handle_proxy(unique_handle& output)
 : m_output(output) { }

 ~handle_proxy() { m_output.reset(m_rawHandle); }

 HANDLE* addressof() { return &m_rawHandle; }
 operator HANDLE*() { return addressof(); }

 // Not copyable, not movable.
 handle_proxy(const handle_proxy&) = delete;
 handle_proxy& operator=(const handle_proxy&) = delete;

 unique_handle& m_output;
 HANDLE m_rawHandle = nullptr;
};

DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle),
 0, FALSE, DUPLICATE_SAME_ACCESS);

Everything’s looking great, until somebody does this:

// Try to duplicate the handle for EVENT_MODIFY_STATE access
// and reset it.
if (DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle),
 EVENT_MODIFY_STATE, FALSE, 0) &&
 ResetEvent(duplicateHandle.get()) { ... }

Do you see the problem?

The C++ rules for temporary objects is that they are destructed at the end of the “full

expression” that contains them. This means that the temporary handle_ proxy object

doesn’t get destructed until the entire expression inside the if statement has been

evaluated, which means that the Reset Event happens before the proxy’s destructor can

transfer the raw pointer into the smart pointer.

1. Create temporary handle_ proxy .

4/14

2. Convert it to a HANDLE* .

3. Call Duplicate Handle .

4. Assuming Duplicate Handle succeeds, call Reset Event with the duplicate ‐

Handle .

5. Destruct the handle_ proxy , which copies the raw handle into duplicate Handle .

We want step 5 to happen before step 4, but the C++ rules for destruction of temporary

objects forces the proxy to linger until after the expression has been evaluated.

What can we do?

One option is to introduce a dreaded macro which forces temporaries to be destructed

prematurely.

#define DESTRUCT_TEMPORARIES(v) [&]() { return (v); }()

This macro wraps the argument inside an immediately-evaluated lambda and propagates the

value of the expression. This doesn’t seem to accomplish anything, but what it does is pull v

into its own full expression, thereby forcing its temporaries to be destructed immediately

after its evaluation.

if (DESTRUCT_TEMPORARIES(DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle),
 EVENT_MODIFY_STATE, FALSE, 0)) &&
 ResetEvent(duplicateHandle.get()) { ... }

This is ugly for multiple reasons. One is that it encourages passing multi-line entities to

macros. Second, it’s a macro used for something other than #ifdef.

Another option is to manage the transfer explicitly.

https://blogs.msdn.microsoft.com/oldnewthing/20190115-00/?p=100705
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es30-dont-use-macros-for-program-text-manipulation

5/14

struct handle_proxy
{
 handle_proxy(unique_handle& output)
 : m_output(std::addressof(output)) { }

 ~handle_proxy() { transfer(); }

 void transfer()
 {
 if (m_output) {
 std::exchange(m_output, {})->reset(m_rawHandle);
 }
 }

 HANDLE* addressof() { return &m_rawHandle; }
 operator HANDLE*() { return addressof(); }

 // Not copyable.
 handle_proxy(const handle_proxy&) = delete;
 handle_proxy& operator=(const handle_proxy&) = delete;

 // Movable.
 handle_proxy(handle_proxy&& other)
 : m_output(std::exchange(other.m_output, {})),
 m_rawHandle(std::exchange(other.m_rawHandle, {})) { }

 handle_proxy& operator=(handle_proxy&& other)
 {
 transfer();
 m_output = std::exchange(other.m_output, {});
 m_rawHandle = std::exchange(other.m_rawHandle, {});
 }

 unique_handle* m_output;
 HANDLE m_rawHandle = nullptr;
};

In this version, we capture a raw pointer to the unique_ handle so that we have a way to

keep track of whether the result has been transferred or not: If the pointer is nullptr , then

the transfer has already taken place.

Now that we have a way to say “Nothing to transfer,” we can add a move constructor and

move assignment operator, both of which leave the source in the “Nothing to do” state.

You can continue to use this version of the handle_proxy the same as the previous version,

or you can opt to trigger the transfer early:

6/14

if (auto proxy = handle_proxy(duplicateHandle);
 DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), proxy,
 EVENT_MODIFY_STATE, FALSE, 0)) &&
 (proxy.transfer(), ResetEvent(duplicateHandle.get())) { ... }

This is still pretty ugly. You can clean it up a little by having the transfer function also return

the handle that it transferred.

struct handle_proxy
{
 ...
 HANDLE transfer()
 {
 if (m_output) {
 std::exchange(m_output, {})->reset(m_rawHandle);
 }
 return m_rawHandle;
 }
 ...
};

if (auto proxy = handle_proxy(duplicateHandle);
 DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), proxy,
 EVENT_MODIFY_STATE, FALSE, 0)) &&
 ResetEvent(proxy.transfer())) { ... }

It’s a little less ugly, but also more puzzling.

Perhaps the way out is simply to split it into two expressions.

if (DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle),
 EVENT_MODIFY_STATE, FALSE, 0)) {

 // Test separately to give handly_proxy's destructor a chance to
 // put the result into duplicateHandle before we read it out.
 if (ResetEvent(duplicateHandle.get())) { ... }
}

If you are willing to wrap every system function you need to interact with, you could add a

wrapper that returns a unique_ handle directly.

7/14

unique_handle DuplicateAndReturnHandle(
 HANDLE sourceProcess,
 HANDLE sourceHandle,
 HANDLE targetProcess,
 DWORD desiredAccess,
 BOOL inheritHandle,
 DWORD options)
{
 HANDLE targetHandle;
 if (DuplicateHandle(sourceProcess, sourceHandle,
 targetProcess, &targetHandle,
 desiredAccess, inheritHandle, options)) {
 return unique_handle{ targetHandle };
 }
 return {};
}

if ((duplicateHandle = DuplicateAndReturnHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), EVENT_MODIFY_STATE, FALSE, 0)) &&
 ResetEvent(duplicateHandle.get())) { ... }
}

The downside of this is that you have an entire library of wrapper functions you’ll have to

maintain. And if the function is like Reg Open Key Ex and returns information in addition to

the handle, you’ll have to put it into a std:: tuple or a std:: variant , which is

another level of bother.

Consider the unique_handle. It specializes std:: unique_ ptr to support Windows

kernel handles. It lets you get all the niceties of std:: unique_ ptr with just a handful of

lines of code.

But then you have the problem of interoperating with the rest of the system. For example,

how would you use a unique_ handle to receive the result of a duplication?

unique_handle originalHandle = ...;
unique_handle duplicateHandle;

if (DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), &duplicateHandle,
 0, FALSE, DUPLICATE_SAME_ACCESS)) { ... }

This doesn’t compile because the operator& for a unique_ ptr doesn’t give you a

pointer to the inner raw pointer. You’ll have to perform the operation in two steps.

https://devblogs.microsoft.com/oldnewthing/20180831-00/?p=99625

8/14

HANDLE rawDuplicateHandle = nullptr;

// First, get a raw handle as the duplicate.
auto result = DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), &rawDuplicateHandle,
 0, FALSE, DUPLICATE_SAME_ACCESS);

// Then set it into the smart pointer.
duplicateHandle.reset(rawDuplicateHandle);

// Then see if it worked.
if (result) { ... }

We could tune this a little:

HANDLE rawDuplicateHandle;

// Out with the old.
duplicateHandle.reset();

// Try to get a new handle.
if (DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), &rawDuplicateHandle,
 0, FALSE, DUPLICATE_SAME_ACCESS)) {

 // Save the new handle back into the smart pointer.
 duplicateHandle.reset(rawDuplicateHandle);

 ...
}

But the underlying issue remains: Bridging the gap between the C++ unique_ ptr and the

system function that wants you to pass the address of a HANDLE .

You might decide to create a helper class whose job is to encapsulate this two-step dance,

acting as a proxy between the raw handle and the smart pointer.

9/14

struct handle_proxy
{
 handle_proxy(unique_handle& output)
 : m_output(output) { }

 ~handle_proxy() { m_output.reset(m_rawHandle); }

 HANDLE* addressof() { return &m_rawHandle; }

 // Not copyable, not movable.
 handle_proxy(const handle_proxy&) = delete;
 handle_proxy& operator=(const handle_proxy&) = delete;

 unique_handle& m_output;
 HANDLE m_rawHandle = nullptr;
};

This proxy object lets you pass a HANDLE* to functions that return a handle through a

pointer, and when the proxy is destructed, it transfers the raw handle into the smart pointer.

DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle).addressof(),
 0, FALSE, DUPLICATE_SAME_ACCESS);

What’s happening here is that we create a temporary handle_ proxy object to pass to the

Duplicate Handle function. This temporary object remembers the unique_ handle that

it is proxying for, and produces the address of a plain old HANDLE which is what gets passed

to the to the Duplicate Handle function. After the Duplicate Handle function returns,

the temporary is destructed, and the destructor takes the raw handle in m_rawHandle and

puts it into the smart pointer.

As a convenience, you could add a conversion operator to save people the hassle of having to

say addressof all over the place.

10/14

struct handle_proxy
{
 handle_proxy(unique_handle& output)
 : m_output(output) { }

 ~handle_proxy() { m_output.reset(m_rawHandle); }

 HANDLE* addressof() { return &m_rawHandle; }
 operator HANDLE*() { return addressof(); }

 // Not copyable, not movable.
 handle_proxy(const handle_proxy&) = delete;
 handle_proxy& operator=(const handle_proxy&) = delete;

 unique_handle& m_output;
 HANDLE m_rawHandle = nullptr;
};

DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle),
 0, FALSE, DUPLICATE_SAME_ACCESS);

Everything’s looking great, until somebody does this:

// Try to duplicate the handle for EVENT_MODIFY_STATE access
// and reset it.
if (DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle),
 EVENT_MODIFY_STATE, FALSE, 0) &&
 ResetEvent(duplicateHandle.get()) { ... }

Do you see the problem?

The C++ rules for temporary objects is that they are destructed at the end of the “full

expression” that contains them. This means that the temporary handle_ proxy object

doesn’t get destructed until the entire expression inside the if statement has been

evaluated, which means that the Reset Event happens before the proxy’s destructor can

transfer the raw pointer into the smart pointer.

1. Create temporary handle_ proxy .

2. Convert it to a HANDLE* .

3. Call Duplicate Handle .

4. Assuming Duplicate Handle succeeds, call Reset Event with the duplicate ‐

Handle .

5. Destruct the handle_ proxy , which copies the raw handle into duplicate Handle .

11/14

We want step 5 to happen before step 4, but the C++ rules for destruction of temporary

objects forces the proxy to linger until after the expression has been evaluated.

What can we do?

One option is to introduce a dreaded macro which forces temporaries to be destructed

prematurely.

#define DESTRUCT_TEMPORARIES(v) [&]() { return (v); }()

This macro wraps the argument inside an immediately-evaluated lambda and propagates the

value of the expression. This doesn’t seem to accomplish anything, but what it does is pull v

into its own full expression, thereby forcing its temporaries to be destructed immediately

after its evaluation.

if (DESTRUCT_TEMPORARIES(DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle),
 EVENT_MODIFY_STATE, FALSE, 0)) &&
 ResetEvent(duplicateHandle.get()) { ... }

This is ugly for multiple reasons. One is that it encourages passing multi-line entities to

macros. Second, it’s a macro used for something other than #ifdef.

Another option is to manage the transfer explicitly.

https://blogs.msdn.microsoft.com/oldnewthing/20190115-00/?p=100705
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es30-dont-use-macros-for-program-text-manipulation

12/14

struct handle_proxy
{
 handle_proxy(unique_handle& output)
 : m_output(std::addressof(output)) { }

 ~handle_proxy() { transfer(); }

 void transfer()
 {
 if (m_output) {
 std::exchange(m_output, {})->reset(m_rawHandle);
 }
 }

 HANDLE* addressof() { return &m_rawHandle; }
 operator HANDLE*() { return addressof(); }

 // Not copyable.
 handle_proxy(const handle_proxy&) = delete;
 handle_proxy& operator=(const handle_proxy&) = delete;

 // Movable.
 handle_proxy(handle_proxy&& other)
 : m_output(std::exchange(other.m_output, {})),
 m_rawHandle(std::exchange(other.m_rawHandle, {})) { }

 handle_proxy& operator=(handle_proxy&& other)
 {
 transfer();
 m_output = std::exchange(other.m_output, {});
 m_rawHandle = std::exchange(other.m_rawHandle, {});
 }

 unique_handle* m_output;
 HANDLE m_rawHandle = nullptr;
};

In this version, we capture a raw pointer to the unique_ handle so that we have a way to

keep track of whether the result has been transferred or not: If the pointer is nullptr , then

the transfer has already taken place.

Now that we have a way to say “Nothing to transfer,” we can add a move constructor and

move assignment operator, both of which leave the source in the “Nothing to do” state.

You can continue to use this version of the handle_proxy the same as the previous version,

or you can opt to trigger the transfer early:

13/14

if (auto proxy = handle_proxy(duplicateHandle);
 DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), proxy,
 EVENT_MODIFY_STATE, FALSE, 0)) &&
 (proxy.transfer(), ResetEvent(duplicateHandle.get())) { ... }

This is still pretty ugly. You can clean it up a little by having the transfer function also return

the handle that it transferred.

struct handle_proxy
{
 ...
 HANDLE transfer()
 {
 if (m_output) {
 std::exchange(m_output, {})->reset(m_rawHandle);
 }
 return m_rawHandle;
 }
 ...
};

if (auto proxy = handle_proxy(duplicateHandle);
 DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), proxy,
 EVENT_MODIFY_STATE, FALSE, 0)) &&
 ResetEvent(proxy.transfer())) { ... }

It’s a little less ugly, but also more puzzling.

Perhaps the way out is simply to split it into two expressions.

if (DuplicateHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), handle_proxy(duplicateHandle),
 EVENT_MODIFY_STATE, FALSE, 0)) {

 // Test separately to give handly_proxy's destructor a chance to
 // put the result into duplicateHandle before we read it out.
 if (ResetEvent(duplicateHandle.get())) { ... }
}

If you are willing to wrap every system function you need to interact with, you could add a

wrapper that returns a unique_ handle directly.

14/14

unique_handle DuplicateAndReturnHandle(
 HANDLE sourceProcess,
 HANDLE sourceHandle,
 HANDLE targetProcess,
 DWORD desiredAccess,
 BOOL inheritHandle,
 DWORD options)
{
 HANDLE targetHandle;
 if (DuplicateHandle(sourceProcess, sourceHandle,
 targetProcess, &targetHandle,
 desiredAccess, inheritHandle, options)) {
 return unique_handle{ targetHandle };
 }
 return {};
}

if ((duplicateHandle = DuplicateAndReturnHandle(
 GetCurrentProcess(), originalHandle.get(),
 GetCurrentProcess(), EVENT_MODIFY_STATE, FALSE, 0)) &&
 ResetEvent(duplicateHandle.get())) { ... }
}

The downside of this is that you have an entire library of wrapper functions you’ll have to

maintain. And if the function is like Reg Open Key Ex and returns information in addition to

the handle, you’ll have to put it into a std:: tuple or a std:: variant , which is

another level of bother.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

