
1/2

April 12, 2019

How can a desktop app use a Windows Runtime object
that infers UI context from its thread? The
IInitializeWithWindow pattern

devblogs.microsoft.com/oldnewthing/20190412-00

Raymond Chen

Many objects in the Windows Runtime can be used from desktop apps. For today’s example,

we’ll use the File Open Picker . This is a rather artificial example because you could just use

the IFile Dialog interface to get equivalent functionality in a desktop app, but I just picked

it for use as an example.

Start with our scratch program and make these changes:

#include <winrt/windows.storage.pickers.h>

winrt::Windows::Foundation::IAsyncAction
ShowFilePickerAsync(HWND hwnd)
{
 auto picker = winrt::Windows::Storage::Pickers::FileOpenPicker();
 picker.FileTypeFilter().Append(L".jpg");
 auto file = co_await picker.PickSingleFileAsync();
}

winrt::fire_and_forget OnChar(HWND hwnd, TCHAR ch, int cRepeat)
{
 co_await ShowFilePickerAsync(hwnd);
}

// Add to WndProc
 HANDLE_MSG(hwnd, WM_CHAR, OnChar);

Run this program and press a key. The program will crash because the File Open Picker

looks for a Core Window on the current thread to serve as the owner of the dialog. But we are

a Win32 desktop app without a Core Window .

The solution is to use the IInitialize With Window interface. Many Windows Runtime

objects which infer the Core Window from the current thread support the IInitialize ‐

With Window interface to allow a Win32 desktop app to specify an explicit window.

https://devblogs.microsoft.com/oldnewthing/20190412-00/?p=102413
https://blogs.msdn.microsoft.com/oldnewthing/20030723-00/?p=43073
https://docs.microsoft.com/en-us/windows/desktop/api/shobjidl_core/nn-shobjidl_core-iinitializewithwindow

2/2

Make the following changes to the program:

#include <shobjidl.h>
#include <winrt/windows.storage.pickers.h>

winrt::Windows::Foundation::IAsyncAction
ShowFilePickerAsync(HWND hwnd)
{
 auto picker = winrt::Windows::Storage::Pickers::FileOpenPicker();
 picker.as<IInitializeWithWindow>()->Initialize(hwnd);
 picker.FileTypeFilter().Append(L".jpg");
 auto file = co_await picker.PickSingleFileAsync();
}

This time, the File Open dialog opens because we explicitly provided a window handle to use

as the owner.

The IInitialize Window Window pattern is used mostly in the case where an object is

simply constructed. There is another pattern for the case where an object is obtained by

calling a method: The interop pattern, which I covered some time ago.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20170315-00/?p=95735
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

