
1/3

March 29, 2019

C++/WinRT envy: Bringing thread switching tasks to C#
(WPF and WinForms edition)

devblogs.microsoft.com/oldnewthing/20190329-00

Raymond Chen

Last time, we brought Thread Switcher. Resume Foreground Async and Thread ‐

Switcher. Resume Background Async to C# for UWP. Today, we’ll do the same for WPF

and Windows Forms.

It’ll be easier the second and third times through because we already learned how to

structure the implementation. It’s just the minor details that need to be tweaked.

https://devblogs.microsoft.com/oldnewthing/20190329-00/?p=102373

2/3

using System;
using System.Runtime.CompilerServices;
using System.Threading; // For ThreadPool
using System.Windows.Forms; // For Windows Forms
using System.Windows.Threading; // For WPF

// For WPF
struct DispatcherThreadSwitcher : INotifyCompletion
{
 internal DispatcherThreadSwitcher(Dispatcher dispatcher) =>
 this.dispatcher = dispatcher;
 public DispatcherThreadSwitcher GetAwaiter() => this;
 public bool IsCompleted => dispatcher.CheckAccess();
 public void GetResult() { }
 public void OnCompleted(Action continuation) =>
 dispatcher.BeginInvoke(continuation);
 Dispatcher dispatcher;
}

// For Windows Forms
struct ControlThreadSwitcher : INotifyCompletion
{
 internal ControlThreadSwitcher(Control control) =>
 this.control = control;
 public ControlThreadSwitcher GetAwaiter() => this;
 public bool IsCompleted => !control.InvokeRequired;
 public void GetResult() { }
 public void OnCompleted(Action continuation) =>
 control.BeginInvoke(continuation);
 Control control;
}

// For both WPF and Windows Forms
struct ThreadPoolThreadSwitcher : INotifyCompletion
{
 public ThreadPoolThreadSwitcher GetAwaiter() => this;
 public bool IsCompleted =>
 SynchronizationContext.Current == null;
 public void GetResult() { }
 public void OnCompleted(Action continuation) =>
 ThreadPool.QueueUserWorkItem(_ => continuation());
}

class ThreadSwitcher
{
 // For WPF
 static public DispatcherThreadSwitcher ResumeForegroundAsync(
 Dispatcher dispatcher) =>
 new DispatcherThreadSwitcher(dispatcher);

 // For Windows Forms
 static public ControlThreadSwitcher ResumeForegroundAsync(

3/3

 Control control) =>
 new ControlThreadSwitcher(control);

 // For both WPF and Windows Forms
 static public ThreadPoolThreadSwitcher ResumeBackgroundAsync() =>
 new ThreadPoolThreadSwitcher();
}

The principles for these helper classes are the same as for their UWP counterparts. They are

merely adapting to a different control pattern.

WPF uses the System. Threading. Dispatcher class to control access to the UI thread. The

way to check if you are on the dispatcher’s thread is to call Check Access() and see if it

grants you access. If so, then you are already on the dispatcher thread. Otherwise, you are on

the wrong thread, and the way to get to the dispatcher thread is to use the Begin Invoke

method.

In Windows Forms, controls incorporate their own dispatcher. To determine if you’re on the

control’s thread, you check the Invoke Required property. If it tells you that you need to

invoke, then you call Begin Invoke to get to the correct thread.

Both WPF and Windows Forms use the CLR thread pool. As before, we check the

Synchronization Context to determine whether we are on a background thread already. If

not, then we use Queue User Work Item to get onto the thread pool.

So there we have it, C++/WinRT-style thread switching for three major C# user interface

frameworks. If you feel inspired, you can do the same for Silverlight, Xamarin, or any other

C# UI framework I may have forgotten.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

