
1/7

March 28, 2019

C++/WinRT envy: Bringing thread switching tasks to C#
(UWP edition)

devblogs.microsoft.com/oldnewthing/20190328-00

Raymond Chen

Last time, we developed a Run Task Async method to try to make it easier to switch threads

in a task, but we saw that while it simplified some operations, it was still cumbersome

because of the difficulty of sharing state between the main method and the async lambdas

that it kicked off to other threads.

Let’s fix that by stealing an idea from C++/WinRT: Make thread-switching an awaitable

operation.

In C++/WinRT, you can switch threads by awaiting a magic object where you enter on one

thread and pop out the other side on a different thread. It’s like Portal for threads!

https://devblogs.microsoft.com/oldnewthing/20190328-00/?p=102368
https://en.wikipedia.org/wiki/Portal_(video_game)

2/7

// C++/WinRT

winrt::fire_and_forget MyPage::Button_Click()
{
 // We start on a UI thread.
 auto lifetime = get_strong();

 // Get the control's value from the UI thread.
 auto v = SomeControl().Value();

 // Move to a background thread.
 co_await winrt::resume_background();

 // Do the computation on a background thread.
 auto result1 = Compute1(v);
 auto other = co_await ContactWebServiceAsync();
 auto result2 = Compute2(result1, other);

 // Return to the UI thread to provide an interim update.
 co_await winrt::resume_foreground(Dispatcher());

 // Back on the UI thread: We can update UI elements.
 TextBlock1().Text(result1);
 TextBlock2().Text(result2);

 // Back to the background thread to do more computations.
 co_await winrt::resume_background();

 auto extra = co_await GetExtraDataAsync();
 auto result3 = Compute3(result1, result2, extra);

 // Return to the UI thread to provide a final update.
 co_await winrt::resume_foreground(Dispatcher());

 // Update the UI one last time.
 TextBlock3().Text(result3);
}

The thread-switching is expressed simply as an asynchronous operation. Constructors and

destructors still run at the usual times, so you can use RAII types naturally. You can perform

these magic co_await operations inside loops or conditionals, and they behave in the

natural way.

// Move to a background thread if a condition is met.
if (condition) {
 co_await winrt::resume_background();
}

DoSomething();

3/7

In the above case, the Do Something() occurs on a background thread if the condition is

met, or it occurs on the current thread if the condition is not met. This sort of flexibility is

difficult to express using our previous model of always putting off-thread actions into an

asynchronous lambda.

Okay, enough hype. Let’s bring resume_ foreground() and resume_ background() to

C#!

using System;
using System.Runtime.CompilerServices;
using System.Threading;
using Windows.System.Threading;
using Windows.UI.Core;

struct DispatcherThreadSwitcher : INotifyCompletion
{
 internal DispatcherThreadSwitcher(CoreDispatcher dispatcher) =>
 this.dispatcher = dispatcher;
 public DispatcherThreadSwitcher GetAwaiter() => this;
 public bool IsCompleted => dispatcher.HasThreadAccess;
 public void GetResult() { }
 public void OnCompleted(Action continuation) =>
 _ = dispatcher.RunAsync(CoreDispatcherPriority.Normal,
 () => continuation());
 CoreDispatcher dispatcher;
}

struct ThreadPoolThreadSwitcher : INotifyCompletion
{
 public ThreadPoolThreadSwitcher GetAwaiter() => this;
 public bool IsCompleted =>
 SynchronizationContext.Current == null;
 public void GetResult() { }
 public void OnCompleted(Action continuation) =>
 _ = ThreadPool.RunAsync(_ => continuation());
}

class ThreadSwitcher
{
 static public DispatcherThreadSwitcher ResumeForegroundAsync(
 CoreDispatcher dispatcher) =>
 new DispatcherThreadSwitcher(dispatcher);
 static public ThreadPoolThreadSwitcher ResumeBackgroundAsync() =>
 new ThreadPoolThreadSwitcher();
}

We can use the methods in Thread Switcher the same way we did in C++/WinRT:

4/7

public sealed partial class MyPage : Page
{
 void Button_Click()
 {
 // Get the control's value from the UI thread.
 var v = SomeControl.Value;

 // Move to a background thread.
 await ThreadSwitcher.ResumeBackgroundAsync();

 // Do the computation on a background thread.
 var result1 = Compute1(v);
 var other = await ContactWebServiceAsync();
 var result2 = Compute2(result1, other);

 // Return to the UI thread to provide an interim update.
 await ThreadSwitcher.ResumeForegroundAsync(Dispatcher);

 // Back on the UI thread: We can update UI elements.
 TextBlock1.Text = result1;
 TextBlock2.Text = result2;

 // Back to the background thread to do more computations.
 await ThreadSwitcher.ResumeBackgroundAsync();

 var extra = await GetExtraDataAsync();
 var result3 = Compute3(result1, result2, extra);

 // Return to the UI thread to provide a final update.
 await ThreadSwitcher.ResumeForegroundAsync(Dispatcher);

 // Update the UI one last time.
 TextBlock3.Text = result3;
 }
}

This is identical to our original “all on the UI thread” code, excepty for the calls to Thread ‐

Switcher members.

How does this Thread Switcher class work?

We need to understand the awaitable-awaiter pattern and how the compiler uses it. Read the

linked articles for details. In summary, the line

result = await x;

compiles to something spiritually similar to the following:¹

https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-2-awaitable-awaiter-pattern
https://weblogs.asp.net/dixin/understanding-c-sharp-async-await-1-compilation

5/7

var awaiter = x.GetAwaiter();
if (!awaiter.IsCompleted) {
awaiter.OnCompleted(() => goto resume);
return task;
resume:;
}
result = awaiter.GetResult();

First, the compiler calls the Get Awaiter method to obtain an “awaiter”. If the awaiter says

that the task has not yet completed, then the compiler tells the awaiter, “Okay, well, when it’s

complete, let me know.” Then the function returns. When the operation finally completes,

execution resumes.

When the operation is complete, either because it was complete all along, or because we were

resumed after a delayed completion, the result is obtained by calling the awaiter’s Get ‐

Result() method.

You can create custom awaitable things by plugging into the above pattern.

In our case, Thread Switcher. Resume Foreground Async() works as follows:

It creates a Dispatcher Thread Switcher with the dispatcher you want to use.

The Dispatcher Thread Switcher. Get Awaiter method returns itself. The object

serves double-duty as the awaitable object and its own awaiter.

To determine whether the operation has already completed, the Is Completed

property reports whether we are already on the dispatcher’s thread. If so, then the

compiler won’t bother scheduling a continuation; it’ll just keep executing.

If we report that the operation has not completed, the compiler will use the On ‐

Completed method to ask us to complete the operation and then call a specific

delegate once it’s done. We queue a work item onto the dispatcher’s thread.

The work item runs on the dispatcher’s thread, and from that work item, we invoke the

completion delegate. The coroutine resumes execution on the dispatcher’s thread, as

desired.

The Thread Switcher. Resume Background Async() method works almost the same way,

but for the thread pool rather than for a dispatcher.

It creates a Thread Pool Thread Switcher .

The Thread Pool Thread Switcher. Get Awaiter method returns itself. Again, the

object serves double-duty as the awaitable object and its own awaiter.

To determine whether the operation has already completed, we check the current

Synchronization Context . A value of null means that we are already on a

background thread.

6/7

If we report that the operation has not completed, the compiler will use the On ‐

Completed method to ask us to complete the operation and then call a specific

delegate once it’s done. We queue a work item onto the thread pool.

The work item runs on a thread pool thread, and from that work item, we invoke the

completion delegate. The coroutine resumes execution on a thread pool thread, as

desired.

All the magic is done by a handful of one-line methods.

Integrating thread switching via await not only simplifies the code, it also opens up new

usage patterns that were difficult to accomplish without it.

// Assume we enter on the UI thread.
using (var connection = new Connection()) {

 // Initialize on the UI thread since
 // we need information from UI objects.
 connection.Initialize(SomeParameter);

 await ThreadSwitcher.ResumeBackgroundAsync();
 // Execute on a background thread.
 connection.Execute();

} // connection is disposed here

// Process the results on a background thread.
Process(connection.GetResults());

Notice that we switched threads right in the middle of the using block, so that we exited

the block on a different thread from the one we started!

When I show this trick to people, their reactions tend to fall into one of two categories.

1. This is truly embracing the concept of asynchronous operations, and it’s a game-

changer for code that needs to perform multiple actions on different threads. We

should make this trick more widely known.

2. This is an offense against nature. C# developers have long internalized the rule that

“Unless explicitly configured, await does not switch threads,” but this class violates

that rule.

Let me know in the comments which side you identify with. And if you identify with the first

group, should I adopt the Thread Switcher class in the UWP samples repo?

Next time, we’ll implement the Thread Switcher methods for WPF and WinForms.

¹ In reality, the compiler remembers where to resume execution in a state variable prior to

the return , and the goto resume is done by resuming the state machine.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.configureawait
https://github.com/Microsoft/Windows-universal-samples/

7/7

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

