
1/3

March 15, 2019

How can we use IsBadWritePtr to fix a buffer overflow, if
IsBadWritePtr is itself bad?

devblogs.microsoft.com/oldnewthing/20190315-00

Raymond Chen

A customer asked for assistance in investigating an access violation caused by a buffer

overflow. They figured that they could probe whether the buffer is large enough to receive the

data by using Is Bad Write Ptr , but then they saw that Is Bad Xxx Ptr should really be called

Crash Program Randomly. They were wondering what alternatives existed to Is Bad Xxx Ptr .

The alternative to Is Bad Xxx Ptr is not passing bad pointers in the first place.

If you are getting an access violation from a buffer overflow, the fix for the problem is not to

try to detect the overflow as it happens. the fix is to stop the overflow before it happens.

The customer shared their code and the stack trace at which the access violation occurred:

msvcrt!memcpy+0xb4
contoso!CBuffer::CopyFromRange+0x92
contoso!CBuffer::ReadAt+0x861
contoso!CLockBytes::ReadAt+0xfd
contoso!CStream::Read+0xe3
contoso!CData::ParseFile+0x606

The buffer overflow occurred because the memcpy was writing past the end of the buffer

passed to CStream::Read . The thing to do is not try to detect the maximum writable buffer

size, but to stop passing invalid buffer sizes.

Because there’s probably writable memory after the buffer that is not part of the buffer. If the

invalid buffer size were only slightly larger than the buffer (rather than ridiculously larger

than the buffer), you wouldn’t have gotten an access violation, but you still had a buffer

overflow.

The offending Read call came from here:

https://devblogs.microsoft.com/oldnewthing/20190315-00/?p=102316
https://blogs.msdn.microsoft.com/oldnewthing/20060927-07/?p=29563

2/3

// Code in italics is wrong
 uint32_t numBlocks;
 uint32_t actualBytesRead;

 // First, read the number of blocks.
 HRESULT hr = stream.Read(&numBlocks, sizeof(uint32_t), &actualBytesRead);
 if (FAILED(hr) || actualBytesRead != sizeof(uint32_t)) {
 goto Reject;
 }

 // Next, read the size of each block.
 uint32_t blockSize;
 hr = stream.Read(&blockSize, sizeof(uint32_t), &actualBytesRead);
 if (FAILED(hr) || actualBytesRead != sizeof(uint32_t)) {
 goto Reject;
 }

 // Now read the blocks.
 DWORD i;
 for (i = 0; i < numBlocks; i++)
 {
 // Read each block.
 BLOCK block = { 0 };
 hr = stream.Read(&block, blockSize, &actualBytesRead);
 // ^^^^^^^^^^^^^^^^^ invalid buffer here
 if (FAILED(hr) || actualBytesRead != sizeof(uint32_t)) {
 goto Reject;
 }

The stack trace implicates the highlighted line of code.

So how do we prevent the invalid buffer from being passed to the Read method?

From code inspection, we see that we read blockSize bytes into a BLOCK structure, but

we didn’t take any steps to ensure that blockSize is no larger than at BLOCK . In other

words, we have a buffer of size sizeof(BLOCK) , and we ask to read blockSize bytes into

it, so it is our responsibility to ensure that blockSize <= sizeof(BLOCK) .

However, no such buffer size validation was present.

How to fix this depends on how you want to deal with unexpected block sizes.

If your intent is to allow large block sizes and just ignore the fields that are “from the future”,

then you would read min(blockSize, sizeof(block)) bytes, and then Seek over the

extra bytes (if any).

If your intent is to reject large block sizes, then go ahead and reject them.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

