
1/2

February 4, 2019

The Intel 80386, part 11: The TEB
devblogs.microsoft.com/oldnewthing/20190203-00

Raymond Chen

The 80386 does not have a lot of registers. But there needs to be a place to record per-thread

information. For performance reasons, this should be something available in user mode, to

avoid a kernel transition. But where do we keep it? We don’t want to burn a precious general-

purpose register to hold this value.

Ah, but there are some available registers: The segment registers! There are six segment

registers on the 80386:

Segment Mnemonic

ss stack segment

cs code segment

ds data segment

es extra segment

fs

gs

The previous versions of the processor had only ss, cs, ds, and es. The 80386 added two new

segment registers, which were named fs and gs to continue the alphabetic pattern, but the

letters f and g don’t have any mnemonic significance.

The first four segments have architectural meaning. The stack segment is used by

instructions that access the stack, either implicitly via instructions like PUSH , or explicitly by

accessing memory with the esp or ebp registers. The code segment specifies which segment

the instruction pointer is reading from. The data segment is used by most memory-access

instructions, and the extra segment is used by the block operation instructions.

But the two bonus segment registers aren’t architecturally significant. We can use them for

anything!

https://devblogs.microsoft.com/oldnewthing/20190203-00/?p=101028

2/2

On the 80386, Windows uses the fs segment register to access a small block of memory that

is associated with each thread, known as the Thread Environment Block, or TEB.

To access memory relative to a specific segment register, you prefix the segment register and

a colon to the memory reference.

 MOV eax, fs:[0] ; eax = memory at offset 0 in segment fs

The part of the TEB you’re going to see most often is the memory at offset 0, which is the

head of a linked list of structured exception handling records threaded through the stack. The

80386 is unusual in that it’s the only architecture which executes instructions at runtime to

manage exception handling state. All the other architectures use tables generated at compile

time, so that there is no runtime penalty.

Windows on the 80386 does not use the gs register for anything as far as I can tell.

Next time, I’m going to break my promise and cover the instructions that you will never see.

Raymond Chen

Follow

http://devblogs.microsoft.com/oldnewthing/20190205-00/?p=101030
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

