
1/5

January 30, 2019

The Intel 80386, part 8: Block operations
devblogs.microsoft.com/oldnewthing/20190129-00

Raymond Chen

Most of the special-purpose operations that the 80386 inherited from the 8086 are largely

obsolete. Although processors still support them, the implementations are not optimized,

and compilers don’t generate them.

Except for the block operations. Those are still important.

The block operations (formally known as “string” instructions) operate on blocks of memory.

They are another class of the unusual instructions that operate on two pieces of memory in a

single instruction.

The implied source memory is pointed to by the esi register, and the implied destination

memory is pointed to by the edi register. You are not required to specify the implied

operands in assembly language, but the Windows disassembler always shows them. I’ll show

them as they are disassembled, since the focus of this series is on reading disassembly of

compiler-generated code, not on writing assembly.

Remember this table?

Operand size Hi Lo

byte AH AL

word DX AX

dword EDX EAX

We saw this table when we studied multiplication and division. Well, we’re going to use the

lo column again.

Let’s also define this operation:

https://devblogs.microsoft.com/oldnewthing/20190129-00/?p=100825

2/5

advance reg {
 if (direction flag is clear) reg += sizeof(size)
 if (direction flag is set) reg -= sizeof(size)
}

The advance operation performs a post-increment if the direction flag is clear, aka up, or a

post-decrement if the direction flag is set, aka dn (down).

The DF flag is required to be up at function call boundaries. A function is permitted to set it

to dn temporarily, but it needs to set it back to up before allowing control to leave the

function.¹

In practice, the direction flag is always up, except possibly for brief moments inside the

memmove function when moving between overlapped memory blocks.

 MOVS size PTR [edi], size PTR [esi] ; d = s
 ; advance edi
 ; advance esi

 CMPS size PTR [edi], size PTR [esi] ; set flags per d - s
 ; advance edi
 ; advance esi

 SCAS size PTR [edi] ; set flags per lo - d
 ; advance edi

 LODS size PTR [esi] ; lo = s
 ; advance esi

 STOS size PTR [edi] ; s = lo
 ; advance edi

The “move string” instruction copies the specified unit of memory from the source address to

the destination address, and then post-increments or post-decrements the edi and esi

registers. For example,

 MOVS DWORD PTR [edi], DWORD PTR [esi]
 ; *(int32_t*)edi = *(int32_t*)esi
 ; if up, then edi += 4, esi += 4
 ; if dn, then edi -= 4, esi -= 4

The “compare string” instruction sets flags according to the calculation of d - s , the same

as the CMP instruction, and then post-increments/post-decrements the edi and esi registers.

The “scan string” instruction compares the destination with the lo register and then post-

increments/post-decrements the edi register.

The “load string” instruction loads lo from the source and then post-increments/post-

decrements the esi register.

3/5

The “store string” instruction stores lo to the destination and then post-increments/post-

decrements the edi register.

These instructions are known as “string” operations because they can include a “repeat”

prefix that indicates that the operation should be repeated for a number of times specified by

the ecx register, which is the length of the string.

Prefixed opcode Meaning

REP MOVS Move ecx units

REPE CMPS Compare ecx units as long as they are equal

REPNE CMPS Compare ecx units as long as they are different

REPE SCAS Compare ecx units as long as they are equal to lo

REPNE SCAS Compare ecx units as long as they are different from lo

REP LODS Load ecx units into lo

REP STOS Store ecx units from lo

The REP prefix causes the operation to repeat for ecx iterations.

The REPE prefix causes the operation to repeat for ecx iterations, provided that the result of

the comparison was “equal”.

The REPNE prefix causes the operation to repeat for ecx iterations, provided that the result

of the comparison was “not equal”.

In all cases, if ecx is zero, then the instruction is a nop.

The assembler accepts REPZ and REPNZ as synonyms for REPE and REPNE , respectively.

Although REP LODS is technically legal, it is of dubious utility because each iteration will

overwrite lo, and only the last iteration’s result will remain.

At the end of the instruction, the ecx register has been decremented by the number of

elements operated upon, and the esi and/or edi registers have been incremented or

decremented by the number of bytes operated upon.

These instructions are typically used only in the following idioms:

4/5

 ; copy ecx units from esi to edi
 REP MOVS size PTR [edi], size PTR [esi]

 ; look for lo in a buffer with ecx elements starting at edi
 REPNE SCAS size PTR [edi]

 ; store ecx copies of lo into the buffer starting at edi
 REP STOS size PTR [edi]

For the cases where there are multiple termination conditions, you can inspect the flags and

the ecx register to determine which condition terminated the loop and consequently how

many iterations of the loop were performed.

 mov ecx, 100 ; search up to 100 characters
 xor eax, eax ; search for 0
 mov edi, offset string ; search this string
 repne scas byte ptr [edi] ; scan bytes looking for 0 (find end of string)
 jnz toolong ; not found
 sub edi, (offset string) + 1 ; calculate length

AFter preparing the preconditions for the REPNE SCAS instruction, we kick off the search.

At the completion of the instruction, we know the following:

If the zero byte was not found:

The loop ran for 100 iterations.

ZF will be clear (nz).

ecx was decremented 100 times. Its value is now zero.

edi was incremented 100 times. It now points one past the end of the buffer.

If the zero byte was found, at offset n:

The loop ran for n+1 iterations.

ZF will be set (zr).

ecx was decremented n+1 times. Its value is the number of characters not

scanned.

edi was incremented n+1 times. It now points one past the zero byte.

After the REPNE SCAS instruction, we check the ZF flag to see whether the zero byte was

found. If not, then we declare the string too long.

Otherwise, the zero byte was found and we want to calculate the length. We have two choices:

We could try to infer it from ecx, whose final value is 100 − (n + 1), or we could try to infer it

from edi, whose final value is offset string + n + 1.

To infer it from ecx, we solve for n and get n = 99 − ecx. However, the 80386 does not have a

way to subtract a register from a constant in a single instruction, so this would require us to

use two instructions, say sub ecx, 99 followed by neg ecx .

5/5

To infer it from edi, we solve for n and get n = edi − offset string − 1 = edi − (offset

string + 1).

The second calculation is easier in this case, so we go with that.

These instructions are usually used with a repeat prefix, but for small numbers of iterations,

they might be unrolled, to avoid the overhead of having to set up the ecx register. The

MOVS instruction encodes in only one byte, so you can do four of them in fewer bytes than it

takes to load a constant into a 32-bit register.

 ; move 16 bytes from esi to edi
 MOVS DWORD PTR [edi], DWORD PTR [esi]
 MOVS DWORD PTR [edi], DWORD PTR [esi]
 MOVS DWORD PTR [edi], DWORD PTR [esi]
 MOVS DWORD PTR [edi], DWORD PTR [esi]

The repeating instructions do not operate atomically. Rather, a single iteration is run, the

registers are updated, and then the instruction pointer either advances to the next instruction

if the loop termination condition is met, or it returns to the instruction if the loop should

continue. This means that at each step, the ecx register decrements by one, the edi and/or esi

registers advance by one unit, the flags are set as necessary, and then the instruction pointer

either moves to the next instruction or stays put. (This design permits interrupts to be

serviced during long block operations.)

You’ll notice this behavior if you try to single-step through a repeated block operation in the

debugger. Each single-step will run one iteration, and it will look like nothing happened

because the instruction pointer didn’t move. But something did happen: The ecx register was

decremented, the edi and/or esi registers advanced, and flags may have been updated.

Next time, we’ll look at the stack frame instructions.

¹ Back in the days when assembly language was still commonly used, a frustrating source of

bugs was forgetting to set the direction flag back to up when you were finished. This caused

future string operations to walk backward through memory rather than forward, and the

result of the error was often not manifested until much, much later, at which point the culprit

was long gone.

Raymond Chen

Follow

http://devblogs.microsoft.com/oldnewthing/20190131-00/?p=100835
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

