
1/5

January 21, 2019

The Intel 80386, part 1: Introduction
devblogs.microsoft.com/oldnewthing/20190120-00

Raymond Chen

Windows NT stopped supporting the Intel 80386 processor with Windows 4.0, which raised

the minimum requirements to an Intel 80486. Therefore, the Intel 80386 technically falls

into the category of “processor that Windows once supported but no longer does.” This series

focuses on the portion of the x86 instruction set available on an 80386, although I will make

notes about future extensions in a special chapter.

The Intel 80386 is the next step in the evolution of the processor series that started with the

Intel 8086 (which was itself inspired by the Intel 8080, which was in turn inspired by the

Intel 8008). Even at this early stage, it had a long history, which helps to explain many of its

strange corners.

As with all the processor retrospective series, I’m going to focus on how Windows NT used

the Intel 80386 in user mode because the original audience for all of these discussions was

user-mode developers trying to get up to speed debugging their programs. Normally, this

means that I omit instructions that you are unlikely to see in compiler-generated code.

However, I’ll set aside a day to cover some of the legacy instructions that are functional but

not used in practice.

The Intel 80386 has eight integer registers, each 32 bits wide.

Register Meaning Preserved?

eax accumulator No

ebx base register Yes

ecx count register No

edx data register No

esi source index Yes

edi destination index Yes

https://devblogs.microsoft.com/oldnewthing/20190120-00/?p=100745

2/5

ebp base pointer Yes

esp stack pointer Sort of

The register names are rather unusual due to the history of the processor line. That history

also explains why the instruction encoding uses the non-alphabetical-order eax, ecx, edx, ebx.

Also for historical reasons, there are also names for selected partial registers.

Register Meaning

ax Lower 16 bits of eax

bx Lower 16 bits of ebx

cx Lower 16 bits of ecx

dx Lower 16 bits of edx

si Lower 16 bits of esi

di Lower 16 bits of edi

bp Lower 16 bits of ebp

sp Lower 16 bits of esp

ah Upper 8 bits of ax

al Lower 8 bits of ax

bh Upper 8 bits of bx

bl Lower 8 bits of bx

ch Upper 8 bits of cx

cl Lower 8 bits of cx

dh Upper 8 bits of dx

dl Lower 8 bits of dx

Operations on these register fragments affect only the indicated bits; the other bits of the 32-

bit register remain unaffected. For example, storing a value into the ax register leaves the

most-significant 16 bits of the eax register unchanged.¹

Windows NT requires that the stack be kept on an 4-byte boundary. There is no red zone.

https://devblogs.microsoft.com/oldnewthing/

3/5

The 80386 also has eight 80-bit extended precision floating point registers named st0

through st7. The floating point system is rather unusual: In addition to the fact that the

registers are extended precision, the programming model for the floating point registers is as

a stack. Values are pushed onto the floating point stack, operations are performed on the

stack, and results are popped off.

Floating point support is optional and is provided by the 80387 coprocessor chip, which runs

concurrently with the main CPU. If a floating point instruction is executed on a system that

lacks a floating point coprocessor, the floating point instruction traps, and the kernel

emulates the instruction.

There are also some non-integer registers which are difficult/impossible to get to, but which

still participate in user-mode instructions.

Register Meaning Notes

eip instruction pointer program counter

eflags flags

cs code segment Don’t worry about it

ds data segment Don’t worry about it

es extra segment Don’t worry about it

fs F segment For TEB access

gs G segment Not used

Windows NT uses the 80386 in flat mode, which means that applications see a contiguous

32-bit address space. The segment registers largely don’t come into play when in flat mode,

with the exception of the fs register, which we’ll learn about more when we get to the TEB.

The flags register is updated by many instructions. We’ll learn more about flags when we

study conditionals.

The 80386 is unusual in that it supports multiple calling conventions. Common to all the

calling conventions are the register preservation rules and the return value rules: The

function return value is placed in eax. If the return value is a 64-bit value, then the most

significant 32 bits are returned in edx. If the return value is a floating point value, it is

returned in st0, and possibly st1 (for complex numbers).

4/5

Furthermore, link-time code generation is permitted to manufacture ad hoc calling

conventions which may not even follow the register preservation rules. It’s crazy free-for-all

time.

The architectural names for data sizes are as follows:

byte: 8-bit value

word: 16-bit value

dword (doubleword): 32-bit value

qword (quadword): 64-bit value

tword (ten-byte word): 80-bit value

Instruction encoding is highly irregular. Instructions are variable-length, and instructions

can begin at any byte boundary.

The general pattern for multi-operand opcodes is

 opcode destination, source

Note that the destination is on the left. Note also that three-operand instructions are rare.

This will become interesting when we get to arithmetic.

Here’s the notation I will use when introducing instructions:

Notation Meaning

rn n-bit register

mn n-bit memory

in n-bit immediate

r/mn n-bit register or n-bit memory

r/m/in n-bit register, n-bit memory, n-bit immediate,
 or 8-bit immediate sign-extended to n bits

If n is omitted, then 8, 16, and 32 are permitted. For example, “r/m” means “r/m8,

r/m16, or r/m32”.

Immediates are sign-extended as necessary.

The first operand is called “d” (destination).

The second operand (if any) is called “s” (source).

The third operand (if any) is called “t” (second source).

At most one of the operands can be a memory operand.

All operands must have the same size.

5/5

Exceptions to the above rules will be called out as necessary.

For example:

 ADD r/m, r/m/i ; d += s, set flags

The ADD instruction takes two operands. The first is a register or memory, and the second is

a register or memory or immediate or single-byte immediate. They cannot both be memory

operands. They must be the same size.

Many instructions have a more compact encoding if the destination register is al, ax, or eax.

The assembly language overloads multiple variations of instructions into a single opcode.

This is different from most other processors, where each opcode maps to an instruction

template, where all that’s left to fill in are the registers and immediates. For example, the

MIPS R4000 has two different shift opcodes depending on whether the shift amount is

specified by an immediate or a register. But the 80386 assembly language uses the same

opcode for both, and it’s the assembler’s job to figure out which variant you intended.

The 80386 does not not perform speculation, does not have an on-chip cache, does not have

a branch predictor, and does not reorder memory accesses. Life was simpler then.

Okay, that’s enough background. We’ll dig in next time by looking at memory addressing

modes.

¹ This partial register behavior wasn’t a big deal at the time, but it ended up creating register

dependencies that made it much harder to add out-of-order execution to later versions of the

processor. It even created a register version of the store-to-load forwarding problem.

The x86-64 architecture took a different approach when it extended the 32-bit registers to

64-bit registers: If the destination register is encoded as a 32-bit subset of a 64-bit register,

the upper 32 bits of the destination register are zeroed.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
http://devblogs.microsoft.com/oldnewthing/20190122-00/?p=100755
https://devblogs.microsoft.com/oldnewthing/20170428-00/?p=96065
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

