
1/4

January 11, 2019

Why do we even need to define a red zone? Can’t I just
use my stack for anything?

devblogs.microsoft.com/oldnewthing/20190111-00

Raymond Chen

On Windows, the stack grows downward from high addresses to low. This is sometimes

architecturally defined, and sometimes it is merely convention. The value pointed-to by the

stack pointer register is the value at the top of the stack, and values deeper on the stack reside

at higher addresses. But what’s up with the data at addresses less than the stack pointer?

⋮

top of stack valid stack data
 valid stack data
 valid stack data

←stack pointer

below the stack
 below the stack
 below the stack

land of mystery

⋮

The platform conventions for some but not all architectures define a red zone, which is a

region of the stack below the stack pointer that is still valid for applications to use.

⋮

top of stack valid stack data
valid stack data
valid stack data

←stack pointer

still valid
still valid

red zone

here
be

dragons

off limits

https://devblogs.microsoft.com/oldnewthing/20190111-00/?p=100685

2/4

⋮

For Windows, the size of the red zone varies by architecture, and is often zero.

Architecture Red zone size

x86 0 bytes

x64 0 bytes

Itanium 16 bytes*

Alpha AXP 0 bytes

MIPS32 0 bytes

PowerPC 232 bytes

ARM32 8 bytes

ARM64 16 bytes

* The Itanium is unusual in that the red zone is placed above the stack pointer, rather than

below it.

In the case of the PowerPC, the red zone is a side effect of the calling convention.

Any memory below the stack beyond the red zone is considered volatile and may be modified

by the operating system at any time.

But seriously, why does the operating system even care what I do with my stack? I mean, it’s

my stack! The operating system doesn’t tell me what to do with memory I allocate via

Virtual Alloc . What makes the stack any different from any other memory?

Consider the following sequence on x86:

 MOV [esp-4], eax ; save eax below the stack pointer
 MOV ecx, [esp-4] ; read it into ecx
 CMP ecx, eax ; are they the same?
 JNZ panic ; N: something crazy happened¹

Can the jump be taken?

Since there is no red zone on x86, the memory at negative offsets relative to the stack pointer

may be overwritten at any time. Therefore, the above sequence is permitted to jump to

panic .

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/#comment-135993

3/4

A debugger may use the memory beyond the red zone as a convenient place to store some

data. For example, if you use the .call command, the debugger will perform the nested call

on the same stack, and likely use some of that stack space to preserve registers so that they

can be restored after the .call ed function returns. Any data stored beyond the red zone

will therefore be destroyed.

Even during normal operation, it’s possible for the operating system to overwrite data

beyond the red zone at any time. Here’s one scenario where it can happen:

Suppose your thread gets pre-empted immediately after you store the data beyond the red

zone. While your thread is waiting for a chance to resume execution, the memory manager

pages out the code. Eventually, your thread resumes execution, and the memory manager

tries to page it back in. Oh no, there’s an I/O error during the page-in! The operating system

pushes an exception frame onto the stack for the STATUS_ IN_ PAGE_ ERROR , clobbering

the data you had been hiding beyond the red zone.

The operating system then dispatches the exception. It goes to a vectored exception handler,

which some other part of your program had installed specifically to handle this possibility,

because your program might be run directly off a CD-ROM or unreliable network. The

program displays a prompt to ask the user to reinsert the CD-ROM and offers an opportunity

to retry. If the user says to retry, then the vectored exception handler returns

EXCEPTION_ CONTINUE_ EXECUTION , and the operating system will restart the failed

instruction.

This time, the restart succeeds because the CD-ROM is present and the code can be paged

back in. The next instruction runs, the one that loads the beyond-the-red-zone value into the

ecx register, but it doesn’t load the value stored by the previous instruction because the

STATUS_ IN_ PAGE_ ERROR exception overwrote it. The comparison fails, and we jump to

the label panic .

If you want to store data on the stack, push it properly: Decrement the stack pointer first, and

then store the value onto the valid portion of the stack. Don’t hide it beyond the red zone.

That memory is volatile and may vanish out from under you.

¹ The coding convention for assembly language² says that comments for jump instructions

should describe the result if the jump is taken. In the example above, the CMP instruction

asks the question, “Are they the same?”, and the JNZ instruction jumps if they are not

equal. The comment therefore begins with “N:” indicating that the jump is taken if the

answer to the previous question is No, and the rest of the comment describe what it means

when the jump is taken.

² Yes, we have a coding convention for assembly language.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

