
1/2

January 8, 2019

STATUS_STACK_BUFFER_OVERRUN doesn’t mean that
there was a stack buffer overrun

devblogs.microsoft.com/oldnewthing/20190108-00

Raymond Chen

A category of dubious security vulnerability is people who recently discovered the STATUS_

STACK_BUFFER_OVERRUN status code.

The confusion is made even worse by the fact that the human-readable description is

The system detected an overrun of a stack-based buffer in this application. This overrun could
potentially allow a malicious user to gain control of this application.

First, the history.

The /GS compiler switch enables the creation of a stack “cookie” value which is used as a

canary to detect that a stack buffer overflow occurred. If the cookie is corrupted, then the

process terminates itself immediately with the status code STATUS_STACK_BUFFER_

OVERRUN .

It was a good name at the time it was introduced.

Over time, other reasons for immediate process termination were invented. Some of them

were security-related. Others weren’t. The term fail fast was given to these sort of oh no

things are really bad I should just stop immediately before they get any worse immediate

process termination situations.

There’s even a compiler intrinsic for terminating the current process using this special status

code. It seems that people can’t agree on whether it’s fail fast or fast fail, so in practice you

see both variations.

What this means is that nowadays when you get a STATUS_STACK_BUFFER_OVERRUN , it

doesn’t actually mean that there is a stack buffer overrun. It just means that the application

decided to terminate itself with great haste.

If you look in the winnt.h file, you’ll see a list of various fast-fail codes. These codes

indicate which type of fast-fail occurred.

https://devblogs.microsoft.com/oldnewthing/20190108-00/?p=100655
https://docs.microsoft.com/en-us/cpp/build/reference/gs-buffer-security-check
https://en.wikipedia.org/wiki/Fail-fast
https://docs.microsoft.com/en-us/cpp/intrinsics/fastfail

2/2

#define FAST_FAIL_LEGACY_GS_VIOLATION 0
#define FAST_FAIL_VTGUARD_CHECK_FAILURE 1
#define FAST_FAIL_STACK_COOKIE_CHECK_FAILURE 2
#define FAST_FAIL_CORRUPT_LIST_ENTRY 3
#define FAST_FAIL_INCORRECT_STACK 4
#define FAST_FAIL_INVALID_ARG 5
#define FAST_FAIL_GS_COOKIE_INIT 6
#define FAST_FAIL_FATAL_APP_EXIT 7

From the above list, the interesting one for me is the FAST_FAIL_FATAL_APP_EXIT

code. This code is used when the C runtime function abort() gets called. And abort() is

called by std::terminate() . And std::terminate() is called automatically for things

like throwing an exception out of a noexcept function, or if a thrown exception goes

unhandled. It’s also used by some modules when an internal assertion failure is hit, or when

an error occurs and the program simply wants to give up rather than try to recover. These are

not necessarily security issues. It’s just the program saying, “Um, I’m in trouble. I think I’ll

just stop right here.”

Related: STATUS_BUFFER_OVERFLOW really should be named STATUS_BUFFER_OVERFLOW_

PREVENTED.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20180928-00/?p=99855
https://devblogs.microsoft.com/oldnewthing/20080404-00/?p=22863
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

