
1/3

January 7, 2019

The GetRegionData function fails if the buffer is allocated
on the stack. Is it allergic to stack memory or something?

devblogs.microsoft.com/oldnewthing/20190107-00

Raymond Chen

If you pass a NULL buffer to the GetRegionData function, the return value tells you the

required size of the buffer in bytes. You can then allocate the necessary memory and call

GetRegionData a second time.

DWORD bytesRequired = GetRegionData(hrgn, 0, NULL);

RGNDATA* data = (RGNDATA*)malloc(bytesRequired);

data->rdh.dwSize = sizeof(data->rdh);

DWORD bytesUsed = GetRegionData(hrgn, bytesRequired, data);

This version of the code works just fine. We call the GetRegionData function to obtain the

number of bytes required, then allocate that many bytes, and then call GetRegionData

again to get the bytes.

However, this version doesn’t work:

struct REGIONSTUFF

{

 ...

 char buffer[USUALLY_ENOUGH];

 ...

};

REGIONSTUFF stuff;

DWORD bytesRequired = GetRegionData(hrgn, 0, NULL);

RGNDATA* data = (RGNDATA*)(bytesRequired > sizeof(stuff.buffer) ?

 malloc(bytesRequired) : stuff.buffer);

data->rdh.dwSize = sizeof(data->rdh);

DWORD bytesUsed = GetRegionData(hrgn, bytesRequired, data);

The idea here is that we preallocate a stack buffer that profiling tells us is usually big enough

to hold the desired data. If the required size fits in our preallocated stack buffer, then we use

it. Otherwise, we allocate the buffer from the heap. (Related.)

This version works fine in the case where the number of bytes required is larger than our

preallocated stack buffer, so that the actual buffer is on the heap.

https://devblogs.microsoft.com/oldnewthing/20190107-00/?p=100645
https://blogs.msmvps.com/gdicanio/2016/11/17/the-small-string-optimization/

2/3

But this version fails (returns zero) if we decide to use the preallocated stack buffer.

Is GetRegionData allergic to stack memory?

No. That’s not the problem.

My psychic powers told me that the ... at the start of struct REGIONSTUFF had a total

size that was not a multiple of four. The buffer member therefore was at an address that

was misaligned for a RGNDATA , causing the code to run afoul of one of the basic ground rules

for programming:

Pointers are properly aligned.

And indeed, it turns out that the members at the start of the structure did indeed have a total

size that was not a multiple of four. Let’s say it went like this:

struct REGIONSTUFF

{

 HGRN hrgn;

 char name[15];

 char buffer[USUALLY_ENOUGH];

};

To fix this, you need to align the buffer the same way as a RGNDATA . One way to do this is

with a union.

struct REGIONSTUFF

{

 HGRN hrgn;

 char name[15];

 union {

 char buffer[USUALLY_ENOUGH];

 RGNDATA data;

 } u;

};

REGIONSTUFF stuff;

DWORD bytesRequired = GetRegionData(hrgn, 0, NULL);

RGNDATA* data = (RGNDATA*)(bytesRequired > sizeof(stuff.u.buffer) ?

 malloc(bytesRequired) : stuff.u.buffer);

data->rdh.dwSize = sizeof(data->rdh);

DWORD bytesUsed = GetRegionData(hrgn, bytesRequired, data);

Another way is to use an alignment annotation. The appropriate annotation varies depending

on which compiler you are using.

https://blogs.msdn.microsoft.com/oldnewthing/20060320-13/?p=31853

3/3

 // Microsoft Visual C++

 __declspec(align(__alignof(RGNDATA)))

 char buffer[USUALLY_ENOUGH];

 // gcc

 char buffer[USUALLY_ENOUGH]

 __attribute__((aligned(__alignof__(RGNDATA))));

 // C++11

 alignas(RGNDATA)

 char buffer[USUALLY_ENOUGH];

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

