
1/1

December 6, 2018

How is it that WriteProcessMemory succeeds in writing
to read-only memory?

devblogs.microsoft.com/oldnewthing/20181206-00

Raymond Chen

When you call WriteProcessMemory and tell it to write to memory that is read-only, the

WriteProcessMemory succeeds. How can that be?

Because WriteProcessMemory tries really hard to please you.

As I noted some time ago, the primary audience for functions like CreateRemoteThread and

WriteProcessMemory is debuggers. And when debuggers try to patch memory, it’s often for

things like patching in a breakpoint instruction or doing some edit-and-continue magic. So

the WriteProcessMemory tries really hard to get those bytes written. If the page is read-

only, WriteProcessMemory temporarily changes the permission to read-write, updates the

memory, and then restores the original permission.

“No need to thank me, just trying to help.”

There is a race condition if the target process happens to be manipulating the page protection

at the same time that WriteProcessMemory is. But that’s okay, because the intended

audience is debuggers, and debuggers will freeze the target process before trying to edit its

memory.

There is no security hole here, because the way the WriteProcessMemory function changes

the page protection is basically VirtualProtectEx , so it will succeed only if you already

could have modified the protections yourself anyway. If you didn’t have permission to change

the protections, then WriteProcessMemory ‘s attempt to change the protections would fail

too.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20181206-00/?p=100415
https://blogs.msdn.microsoft.com/oldnewthing/20120808-00/?p=6913
https://docs.microsoft.com/en-us/visualstudio/debugger/edit-and-continue?view=vs-2015
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

