
1/3

November 30, 2018

Why does Clipboard.SetData put extra junk in the
clipboard data? And how can I get it to stop?

devblogs.microsoft.com/oldnewthing/20181130-00

Raymond Chen

One of the ways of putting data on the clipboard is with the

System.Windows.Forms.Clipboard object. There are methods for putting text on the

clipboard in one of a few the standard text formats. And if you use the Clipboard.SetData

method, you can place data on the clipboard with a custom format name. But when you use

Clipboard.SetData to put text on the clipboard, the actual raw data on the clipboard

contains extra stuff.

Clipboard.SetData("customText", "Hello, world!");

The actual raw bytes on the clipboard are

96 A7 9E FD 13 3B 70 43 A6 79 56 10 6B B2 88 FB

00 01 00 00 00 FF FF FF FF 01 00 00 00 00 00 00

00 06 01 00 00 00 0D 48 65 6C 6C 6F 2C 20 77 6F

72 6C 64 21 0B

The underlined bytes are the ASCII string Hello, world!, but what’s the other junk?

The Clipboard.SetData method must serve two masters. One master is the Windows

clipboard. Custom formats on the Windows clipboard are just binary blobs of data with no

externally-imposed format. Any format for the data is by mutual agreement of the two parties

using that custom format.

The other master is the CLR. If a C# program puts a serializable object on the clipboard, then

it should be able to read it back as an object.

The Clipboard.SetData method takes two parameters. The first, a string, is the custom

clipboard format name. The second, an object, is the object to put on the clipboard.

When putting an object on the clipboard, the CLR uses a BinaryFormatter to serialize the

object to a binary blob, and puts that binary blob on the clipboard. When reading an object

from the clipboard, takes the binary blob from the clipboard and uses a BinaryFormatter

to deserialize the object back into a CLR object.

https://devblogs.microsoft.com/oldnewthing/20181130-00/?p=100365
https://docs.microsoft.com/en-us/dotnet/api/system.windows.textdataformat
https://msdn.microsoft.com/en-us/library/system.windows.forms.clipboard.setdata(v=vs.110).aspx
https://referencesource.microsoft.com/#System.Windows.Forms/winforms/Managed/System/WinForms/DataObject.cs#97ce7cbce10929cb
https://referencesource.microsoft.com/#System.Windows.Forms/winforms/Managed/System/WinForms/DataObject.cs#e947b692ecde8c3b

2/3

Okay, so that keeps the second master happy. But what about the first master? Suppose the

native clipboard has some arbitrary binary blob. How do we recognize that it is an arbitrary

binary blob, rather than a serialized CLR object? Because if we try to deserialize it as a CLR

object, we’ll get garbage.

The answer is that the clipboard puts a secret signal at the start of the binary blob. If the

secret signal is present, then it assumes that the data represents a binary-formatted serialized

CLR object. Otherwise, it assumes the data represents an arbitrary binary blob.

When you read data from the clipboard, and it turns out to be an arbitrary binary blob, the

Clipboard.GetData method returns a Stream containing the raw binary blob.

Conversely, if you want to write a raw binary blob, you can pass a Stream to the the

Clipboard.SetData method.

Okay, so now with some help from [MS-NRBF]: .NET Remoting: Binary Format Data

Structure. we can parse the raw bytes:

magic prefix:

 96 A7 9E FD 13 3B 70 43 A6 79 56 10 6B B2 88 FB

SerializationHeaderRecord

 RecordTypeEnum: 00

 RootId: 01 00 00 00

 HeaderId: FF FF FF FF

 MajorVersion: 01 00 00 00

 MinorVersion: 00 00 00 00

RecordTypeEnum: 06 (BinaryObjectString)

ObjectId: 01 00 00 00

Length: 0D

UTF-8 data: 48 65 6C 6C 6F 2C 20 77 6F 72 6C 64 21

End of serialization: 0B

And to wrap things up, a table, because people like tables.

Operation with

custom format

Format

Raw binary data CLR binary serialized data

SetData Pass Stream Pass anything except Stream

GetData Returns Stream Returns anything except Stream

https://referencesource.microsoft.com/#System.Windows.Forms/winforms/Managed/System/WinForms/DataObject.cs#8c51bc95917bf024
https://referencesource.microsoft.com/#System.Windows.Forms/winforms/Managed/System/WinForms/DataObject.cs#f13ace5762df124c
https://referencesource.microsoft.com/#System.Windows.Forms/winforms/Managed/System/WinForms/DataObject.cs#8788128edebb76a9
https://referencesource.microsoft.com/#System.Windows.Forms/winforms/Managed/System/WinForms/DataObject.cs#aaeb640db20235c3
https://msdn.microsoft.com/en-us/library/cc236844.aspx
https://referencesource.microsoft.com/#mscorlib/system/runtime/serialization/formatters/binary/binaryenums.cs#ed6b5341ded111db

3/3

That wraps up CLR week for this year. The good news is that you made it almost all the way

to the end of the year before I inflicted it upon you. The bad news is that the new year is

coming up soon, so the threat of another CLR week returns more quickly.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

