
1/2

November 19, 2018

How do I suppress the “Did you mean to switch apps?”
warning message from my XAML WebView control?

devblogs.microsoft.com/oldnewthing/20181119-00

Raymond Chen

A customer had an application that used a UWP XAML WebView control. There are some

points at which the user can click an element in the hosted HTML which triggers the main

app to navigate to another part of the app entirely. The customer didn’t give any details, but I

can imagine this being, say, an app that contains multiple mini-web-apps (say, some web

games), and on the main page of each game, there’s a button called Play a different game.

Or maybe it’s something else entirely. Whatever.

The customer managed to find a way to do this: The app registered for a protocol, let’s call it

contoso-game: , and the Exit button navigates the WebView control to contoso-

game:mainmenu . This works fine, but when the user clicks the Exit button, there is a warning

dialog that appears first:

Did you mean to switch apps?

Did you mean to switch apps?

“Contoso” is trying to open “Contoso”.

Yes No

Is there a way to suppress this dialog box? It looks silly to have the program ask permission

to switch to itself.

Your program can handle the WebView.UnsupportedUriSchemeIdentified event.

https://devblogs.microsoft.com/oldnewthing/20181119-00/?p=100265
https://docs.microsoft.com/en-us/uwp/api/windows.ui.xaml.controls.webview
https://docs.microsoft.com/en-us/uwp/api/windows.ui.xaml.controls.webview.unsupportedurischemeidentified

2/2

<WebView

 ...

 UnsupportedUriSchemeIdentified="OnUnsupportedUriSchemeIdentified" />

void OnUnsupportedUriSchemeIdentified(

 WebView sender,

 WebViewUnsupportedUriSchemeIdentifiedEventArgs e)

{
 // Silently allow all navigations back to the app itself.

 if (e.Uri.Scheme == "contoso-game")

 {

 e.Handled = true;

 // Use the existing URI parser on the main page.

 MainPage.InternalNavigateToUri(e.Uri);

 }

}

When the user clicks a link that uses a contoso-game protocol, we mark the event as

handled (so that the WebView control takes no further action), and then forward the URI to

the existing code in our main page that deals with URI activations. Basically, we short-circuit

the activation and handle it internally. This is particularly useful if there is more than once

running instance of the Contoso program: Short-circuiting the activation means that the

navigation is handled by instance the user the clicked on.

Note that intercepting the event from the WebView means that you don’t need to register the

protocol in their application manifest because the protocol is never activated. Instead, the

program intercepts it and performs an internal navigation.

Of course, if the customer were using the contoso-game for other reasons, then they should

leave it in their manifest.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

