
1/5

November 12, 2018

The case of the System process that consumed a lot of
CPU

devblogs.microsoft.com/oldnewthing/20181112-00

Raymond Chen

A report came in through Feedback Hub that the System process was consuming high CPU. I

was able to explain to the customer how to include a performance trace so the problem could

be diagnosed.

In case you want to file a performance issue, the way to include a performance trace is to go

to the Additional details section and click the Recreate my problem button. You will get

additional options:

To help us understand what is causing the problem, please try to make it
happen again while we follow along and capture data.
✓
Include data about Performance ⌵
✓
Include screenshots of each step
You will be able to review and edit the data before sending it.

 ⏱︎
Start
capture

Check the Include data about box and select Performance as the category. Assuming the

performance problem is ongoing, click Start capture and let it run for about 15 seconds, then

click Stop capture. (If the performance problem occurs only when you perform a certain

activity, then click Start capture, then do the activity that creates the performance issue, and

then click Stop capture.)

That creates a performance trace that will be attached to your report.

Okay, let’s open the performance trace that this customer included. The tool for this is the

Windows Performance Analyzer.

Since the problem is high CPU, the natural place to start is the Computation graph, which

shows CPU usage.

Computation

(svg not supported on this site)

https://devblogs.microsoft.com/oldnewthing/20181112-00/?p=100185
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer

2/5

Yup, that sure looks like high CPU usage there.

Create an analysis page for that graph and zoom in to the period of high CPU. Here’s what’s

using the CPU:

Line # Process Thread ID Stack Count % Weight

1 ▷ System 29,815 65.15

2 Idle 0 ▷ [Idle] 510 21.35

3 ▷ Taskmgr.exe (14412) 0.25

4 ▷ MsMpEng.exe (5180) 0.07

And indeed most of it is going to the System process with 65.15%. The Idle thread is a distant

second with 21.35%, and everybody else is noise.

So let’s dig into the System process.

Line # Process Thread ID Stack Count % Weight

1 ▼System (4) 29,815 65.15

2 9200 ▷[Root] 1,605 3.51

3 19708 ▷[Root] 1,576 3.44

4 ▷18748 1,361 2.97

5 17480 ▷[Root] 1,346 2.93

6 12132 ▷[Root] 1,341 2.93

7 13020 ▷[Root] 1,220 2.67

8 15064 ▷[Root] 1,181 2.58

9 16364 ▷[Root] 1,084 2.36

10 11376 ▷[Root] 1,058 2.31

11 20444 ▷[Root] 994 2.17

12 21000 ▷[Root] 978 2.14

3/5

13 20648 ▷[Root] 905 1.97

14 ▷19076 895 1.95

15 8572 ▷[Root] 757 1.65

16 13864 ▷[Root] 743 1.62

17 17072 ▷[Root] 685 1.50

18 16224 ▷[Root] 653 1.43

19 ▷15988 625 1.37

20 19592 ▷[Root] 604 1.32

21 1784 ▷[Root] 571 1.25

22 17872 ▷[Root] 560 1.22

⋮ ⋮ ⋮ ⋮ ⋮

Hm, everything just flattens out. There’s no big culprit sucking up all the CPU.

Are we being nibbled to death?

Let’s look at two of those threads, maybe we’ll discover something.

Line # Process Thread ID Stack Count

1 ▼System (4) 29,815

2 9200 ▼[Root] 1,605

3 ▼ntoskrnl.exe!KxStartSystemThread 1,605

4 | ntoskrnl.exe!PspSystemThreadStartup 1,605

5 | ntoskrnl.exe!ExpWorkerThread 1,605

6 ▷|- ntoskrnl.exe!IopProcessWorkItem 1,554

7 ▷|- ntoskrnl.exe!KeRemovePriQueue 50

8 |- ntoskrnl.exe!ExpWorkerThread<itself> 1

9 19708 ▼[Root] 1,576

4/5

10 ▼|- ntoskrnl.exe!KxStartSystemThread 1,574

11 | ntoskrnl.exe!PspSystemThreadStartup 1,574

12 | ntoskrnl.exe!ExpWorkerThread 1,574

13 ▷| |- ntoskrnl.exe!IopProcessWorkItem 1,538

14 ▷| |- ntoskrnl.exe!KeRemovePriQueue 36

Okay, it seems that the threads are doing IopProcessWorkItem . That explains why the

work is so evenly spread out: It’s a thread pool.

Remove the Thread ID column because we don’t care about which thread is doing the work.

Now we can group purely by stacks.

Line # Process Stack Count % W

1 System (4) 29,815

2 ▼[Root] 29,810

3 ▼|- ntoskrnl.exe!KxStartSystemThread 29,794

4 | ntoskrnl.exe!PspSystemThreadStartup 29,794

5 | ntoskrnl.exe!ExpWorkerThread 29,699

6 ▼| |- ntoskrnl.exe!IopProcessWorkItem 28,742

7 ▼| |- contoso.sys!<PDB not found> 28,707

8 ▼| | |- contoso.sys!<PDB not found> 28,699

9 ▼| | | |- contoso.sys!<PDB not found> 28,588

10 ▷| | | | |- ntoskrnl.exe!RtlWriteRegistryValue 28,572

Aha, basically all of the work items are going to the the Contoso driver, and that driver does

very little work of its own. Of the 28,707 samples that showed that we were running a

Contoso work item, 28,572 of them (over 99%) were in RtlWriteRegistryValue .

Basically, the Contoso driver was burning up all your CPU writing furiously to the registry.

The developers at Contoso replied that the customer was running a version of the driver that

was over a year old. They suggested the customer upgrade to the latest driver and see if that

fixes the problem.

5/5

I’m sure that upgrading to the latest driver will make the problem go away, but I’m not

convinced that it’ll fix the problem. Because what’s probably happening is that the driver got

into some sort of error state and is writing diagnostic information to the registry. That’ll go

away even if you don’t upgrade the driver. All you have to do is reboot.

The real question is what sort of error state the driver managed to get itself into.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

