
1/2

September 10, 2018

How can I conditionally compile based on a preprocessor
macro value, while ensuring that the macro is correctly
spelled?

devblogs.microsoft.com/oldnewthing/20180910-00

Raymond Chen

Continuing on the extremely sporadic topic of stupid C preprocessor tricks.

It is common to have preprocessor macros that control compile-time behavior. C++11 has

std::enable_if to conditionally remove functions and template specializations from

consideration, and C++17 adds if constexpr to allow statements to removed

conditionally. Removing variables is a bit trickier, though. You can probably manage it by

wrapping the variable inside a class that itself uses std::enable_if , but that’s even more

clunky than std::enable_if already is.

Anyway, for whatever reason, you might want to use the preprocessor’s #if directive to

perform your tests. Maybe you are preprocessing something for a purpose other than

compilation by a C or C++ compiler.

But you’re also worried that somebody might misspell your symbol.

// The FEATURE_BLAH macro is defined either as 0 or 1

#if FEATURE_BLUH

... do stuff with feature Blah ...

#endif

Oops, they misspelled FEATURE_BLAH , but the preprocessor doesn’t know that, so it happily

says, “Nope, it’s not defined, skip the body of the #if .”

How do you catch this typo?

You can use your adversary’s power against him.

Since undefined symbols are treated as having the value zero, you can use an expression that

blows up if the value is zero.

https://devblogs.microsoft.com/oldnewthing/20180910-00/?p=99685
https://blogs.msdn.microsoft.com/oldnewthing/20180628-00/?p=99115

2/2

// The FEATURE_BLAH macro is defined either as 1 (off) or 2 (on)

#define GET_NONZERO_VALUE(x) (0/(x) + (x))

#if GET_NONZERO_VALUE(FEATURE_BLAH) == 2

... do stuff with feature Blah ...

#endif

The GET_NONZERO_VALUE macro first tries to divide by its parameter. If the parameter is not

defined or is defined with the value zero, then that results in a division by zero and you get a

compiler error. If the parameter is defined with a nonzero value, then the result of 0/(x) is

zero, and adding that to x yields x .

The last wrinkle is using the defined preprocessor pseudo-function to distinguish between

an undefined macro and a defined macro whose value is zero.

// The FEATURE_BLAH macro is defined to 0 or 1

// The FEATURE_BLAH_OPTION macro is some value

#define GET_FEATURE_VALUE(x) (0/defined(FEATURE_##x) + (FEATURE_##x))

#if GET_FEATURE_VALUE(BLAH)

#if GET_FEATURE_VALUE(BLAH_OPTION) == 1

... do stuff with feature Blah and option 1...

#elif GET_FEATURE_VALUE(BLAH_OPTION) == 2

... do stuff with feature Blah and option 2...

#else

#error Unknown option for FEATURE_BLAH_OPTION.

#endif

#endif

If FEATURE_BLAH is not defined, then the defined(FEATURE_BLAH) will evaluate to zero,

and then you get a divide by zero error in the preprocessor. If it is defined, then

defined(FEATURE_BLAH) evaluates to 1, and the expression 0/1 + FEATURE_BLAH

reduces to just FEATURE_BLAH .

This is an abuse of the preprocessor, but it may come in handy in a pinch.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

