
1/5

August 23, 2018

The PowerPC 600 series, part 14: Code walkthrough
devblogs.microsoft.com/oldnewthing/20180823-00

Raymond Chen

Today we’re going to take a relatively small function and watch what the compiler did with it.

The function is this guy from the C runtime library, although I’ve simplified it a bit to avoid

some distractions.

extern FILE _iob[];

int fclose(FILE *stream)

{

 int result = EOF;

 if (stream->_flag & _IOSTRG) {

 stream->_flag = 0;

 } else {

 int index = stream - _iob;

 _lock_str(index);

 result = _fclose_lk(stream);

 _unlock_str(index);

 }

 return result;

}

Here’s the corresponding disassembly:

; int fclose(FILE *stream)

; {

 mflr r0 ; move return address to r0

 stw r29,-0xC(r1) ; save non-volatile register

 stw r30,-8(r1) ; save non-volatile register

 stw r31,-4(r1) ; save non-volatile register

 stw r0,-0x10(r1) ; save return address

 stwu r1,-0x50(r1) ; create stack frame and link

On entry, the parameters to a function are passed in r3 through r10. This function has only

one parameter, so it goes in r3.

https://devblogs.microsoft.com/oldnewthing/20180823-00/?p=99555

2/5

The return address is passed in lr, but the lr register cannot be stored directly into memory.

We need to transfer it through a general-purpose register. The Microsoft compiler uses r0 for

this purpose (and doesn’t use r0 for any other purpose as far as I can tell.)

The next step is to save the non-volatile registers that the function uses, so that they can be

restored at function exit. Then we save the return address on the stack, and finally create the

stack frame and link it to the previous stack frame.

We created an 80-byte stack frame. The 24 bytes closest to the top of the stack form the

system-reserved area; the next 32 bytes are the home spaces for the eight register

parameters. We don’t call any functions with more than eight parameters, so we don’t need

any space for the outbound parameters beyond eight. Our usable local variables therefore

start at offset 56. On the other hand, we stored the return address at offset 80 − 16 = 64, and

the nonvolatile registers at offsets 68 thorough 76, which means that our local variables live

at offsets 56 through 64. (It turns out that we won’t use any of them! But we had to allocate

them anyway, in order to keep the stack aligned on a 16-byte boundary.)

Okay, with the prologue out of the way, we can start doing real work.

; if (stream->_flag ...

 mr r31,r3 ; r31 = stream

 lwz r3,0xC(r31) ; r3 = stream->_flag

We are going to test a bit in the stream->_flag member, so we need to load that up.

Meanwhile, we save the stream parameter in the r31 register.

; int result = EOF;

 li r30,-1 ; r30 = -1

 li r4,0 ; r4 = 0 (handy zero value)

Interleaved with the evaluation of the condition we insert the initialization of the result

local variable, and we set r4 to zero because zero is a handy value to have.

; if (stream->_flag & _IOSTRG) {

 rlwinm. r3,r3,0,25,25 ; r3 = r3 & 0x40 (_IOSTRG)

 beq notstring ; if bit not set, then go to "else" branch

We use the all-purpose rlwinm instruction here. We shift by zero positions, but specify a

mask of (25,25). On the PowerPC, bits are numbered starting from the most significant bit,

so position 25 has value 1 << (31-25) = 0x40 . Therefore, this instruction is functionally

equivalent to

 andi. r3,r3,0x40 ; r3 = r3 & 0x40 (_IOSTRG)

Since the rlwinm opcode is followed by a period, it sets flags in cr0 based on the result. We

test these flags in the subsequent beq and jump if the bit is not set. Recall that if you don’t

specify a condition register for beq , it defaults to cr0.

3/5

Otherwise, we fall through:

; stream->_flag = 0;

 stw r4,0xC(r31) ; stream->_flag = 0

 b done ; end of "true" branch

We preloaded zero into the r4 register, so we can use a stw to store that zero into the

stream->_flags . That’s the end of the true branch of the if statement, so we jump to

the function exit code.

 } else {

notstring:

; int index = stream - _iob;

 lwz r3,-0x7F3C(r2) ; r3 = &_iob

 subfc r3,r3,r31 ; calculate raw pointer offset

 srawi r29,r3,5 ; divide by 32 to get the index (saved in r29)

First, we need to calculate the address of the _iob global address. The addresses of global

variables are kept in the table of contents. The displacement in memory access instructions is

a signed 16-bit value, so the table of contents register usually points 32KB past the start of

the actual table of contents, so that the code can use both positive and negative offsets to

access a 64KB block of data. And since most programs don’t have more than 8192 global

variables, the offsets you see will almost always be negative.

After we get the address of the _iob global variable, we subtract the raw pointers to get the

byte difference, and then we divide by sizeof(FILE) to get the index. We’re lucky that the

size of a FILE is a power of 2, so a shift instruction can be used instead of a full division.

; _lock_str(index);

 mr r3,r29 ; first function parameter is "index"

 bl _lock_str ; call _lock_str

 nop ; don't need to restore toc

Now that we’ve calculated the index, set it up as the argument for the _lock_str function

and call it. At the time the compiler generated the code, it was not sure whether _lock_str

was a function in the same module or was a naïvely-imported function, so it left a nop after

the bl . If the function turned out to be a naïvely-imported function, the linker would have

changed the nop to lwz r2, 4(sp) in order to restore the table of contents.

; result = _fclose_lk(stream);

 mr r3,r31 ; load parameter for _fclose_lk

 bl _fclose_lk

 mr r30,r3 ; save return value in "result"

The next thing to do is to call _fclose_lk , so we put the stream parameter in r3, copying

it from r31 which is where we saved it at the start of the function. This time, the compiler

knows that _fclose_lk is in the same module, presumably because it was in the same

translation unit, so it doesn’t need to leave a nop after the bl .

https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933

4/5

; _unlock_str(index);

 mr r3,r29 ; load parameter for _unlock_str

 bl _unlock_str

 nop ; don't need to restore toc

After the _fclose_lk , we call _unlock_str , and this time the compiler didn’t know

whether _unlock_str was in the same module or not, so it leaves a precautionary nop

after the bl .

; }

done:

 mr r3,r30 ; set return value

 lwz r0,0x40(r1) ; recover return address

 lwz r29,0x44(r1) ; restore non-volatile register

 lwz r30,0x48(r1) ; restore non-volatile register

 lwz r31,0x4C(r1) ; restore non-volatile register

 mtlr r0 ; move return address to lr so we can jump to it

 addi r1,r1,0x50 ; clean the stack

 blr ; return to caller

We set the return value to the result , and then we enter the epilogue. In the epilogue, we

load the return address into r0, and then restore the non-volatile registers. We load the

return address first so that the mtlr is less likely to stall waiting for the answer to come

back from memory.

One thing you may notice is that the non-volatile registers are saved with negative offsets

(into the red zone) but restored from positive offsets (from the local frame). This makes it

harder to match up the two, but you can generally assume that the compiler knows how to do

math and didn’t mess that up.

The more significant consequence of this is that it’s harder to manually unwind the stack in

order to see what was in the registers of the caller. You can disassemble at the start of the

function to see where the registers were saved, but they are saved at negative offsets, which

you then need to mentally add to the size of the stack frame expressed in the stwu

instruction at the end of the prologue. To get the positive offsets, you need to disassemble at

the end of the function, which is harder to find since you just keep disassembling forward

until you find that you’ve started disassembling another function. And even that trick doesn’t

work if the module has undergone profile-guided optimization, which can make the code for

a function discontiguous.

Anyway, after restoring the non-volatile registers, we move the return address into the lr

register, pop the stack frame, and return. (The Windows NT software conventions require

that the return instruction be encoded exactly as blr and not one of its functional

equivalents.)

5/5

This concludes our very quick tour of the PowerPC 600 series of processors. Like the MIPS

R4000, I never had to do any significant work with PowerPC, so I probably won’t be able to

answer interesting questions. The focus was on learning enough to be able to read valid

compiler output, with a few extra notes on the architecture to call out what makes it different.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

