
1/4

August 22, 2018

The PowerPC 600 series, part 13: Common patterns
devblogs.microsoft.com/oldnewthing/20180822-00

Raymond Chen

Now that we understand function calls and the table of contents, we can demonstrate some

common calling sequences. If you are debugging through PowerPC code, you’ll need to be

able to recognize these different types of calling sequences in order to keep your bearings.

Non-virtual calls generally look like this:

 ; Put the parameters in r3 through r10,

 ; and additional parameters go on the stack

 ; after the home space (not shown here).

 mr r3, r30 ; parameter 1 copied from another register

 li r4, 1 ; parameter 2 is calculated in place

 add r5, r1, 32 ; parameter 3 is address of local variable

 bl destination ; call the function

 nop ; no need to restore table of contents

The final nop may be omitted if the compiler can prove that destination is a function in

the same module. If it turns out that the destination is a glue function, then the nop

becomes

 lwz r2, 4(r1) ; restore table of contents

Virtual calls load the destination from the target’s vtable, and it’s a function pointer, so we

need to prepare the destination’s table of contents as well.

 ; "this" passed in r3. Other parameters go

 ; into r4 through r10, with additional parameters

 ; on the stack after the home space (not shown here).

 mr r3, r30 ; parameter 1 copied from another register

 li r4, 1 ; parameter 2 is calculated in place

 add r5, r1, 32 ; parameter 3 is address of local variable

 lwz r11, (r3) ; r11 = vtable of target

 lwz r11, n(r11) ; r11 = function pointer from vtable

 lwz r12, 0(r11) ; r12 = address of code

 lwz r2, 4(r11) ; load table of contents for destination

 mtctr r12 ; put code address into ctr

 bctrl ; and call it

 lwz r2, n(r1) ; restore our table of contents

https://devblogs.microsoft.com/oldnewthing/20180822-00/?p=99545

2/4

I put all of the virtual dispatch code in one block of contiguous instructions, but in practice

the compiler may choose to interleave it with the preparation of the function arguments to

avoid data load stalls. The above example uses r11 and r12 as temporary registers for

preparing the call, but in practice, the compiler will use any volatile register that is not being

used to pass parameters.¹

A call to an imported function indirects through the import address table entry. This is made

double-complicated because we have to ask the current table of contents where the import

address table entry is, and then we need to set up the table of contents for the destination.

 ; Put the parameters in r3 through r10,

 ; and additional parameters go on the stack

 ; after the home space (not shown here).

 mr r3, r30 ; parameter 1 copied from another register

 li r4, 1 ; parameter 2 is calculated in place

 add r5, r1, 32 ; parameter 3 is address of local variable

 lwz r11, n(r2) ; r11 points to import address table entry

 lwz r11, (r11) ; r11 = point address table entry

 lwz r12, 0(r11) ; r12 = address of code

 lwz r2, 4(r11) ; load table of contents for destination

 mtctr r12 ; put code address into ctr

 bctrl ; and call it

 lwz r2, n(r1) ; restore our table of contents

A call to an imported function incurs several memory accesses:

1. Loading the address of the import address table entry from the table of contents.

2. Loading the function pointer from the import address table.

3. Loading the destination function’s code pointer and table of contents from the

descriptor.

I put the last two together since they almost always come from the same cache line. The

theory is that the load from the table of contents is probably also in cache, so it should be

relatively cheap. (I don’t know how well this holds up in practice.)

If the compiler sees multiple calls to the same imported function, it will often put the address

of the import address table entry into a non-volatile register so it can avoid the load from the

table of contents for the second and subsequent times it calls the function.

The last interesting calling pattern for today is the jump table, commonly used for dense

switch statements. Suppose we have this:

 switch (n) {

 case 1: ...; break;

 case 2: ...; break;

 case 3: ...; break;

 case 4: ...; break;

 }

3/4

The resulting code would look like this:²

 ; jump to address based on value in r3

 addi r3, r3, -1 ; subtract 1

 cmplwi r3, 4 ; in range of the jump table?

 bnl default ; nope, go to the "case default"

 lwz r12, n(r2) ; get address of jump table

 rlwinm r3, r3, 2, 0, 29 ; convert to byte offset

 lwzx r12, r12, r3 ; load entry from jump table

 mtctr r12 ; put code address into ctr

 bctr ; and jump there

The jump table pattern first performs a single-comparison range check by the standard trick

of offseting the control value by the lowest value in the range and using an unsigned

comparison against the length of the range. Asssuming the range check passes, we have to

load the address of the jump table from the table of contents, then use the adjusted value

(shifted left by 2) to index into the jump table to fetch the jump destination. We then move

the jump destination into ctr and jump to it.

The compiler always codes the jump as a bctr because the processor assumes that bctr is

used for computed jumps.

Next time, we wrap up our whirlwind tour of the PowerPC 600 series by putting what we’ve

learned to the test.

¹ You’d think that r0 would be a great choice for this purpose, but it’s not, thanks to the

special rule that r0 cannot be used as the base register for effective address computations.

² At least, that’s what the result should be like. In practice, I’ve seen the compiler generate

code like this:

 ; jump to address based on value in r3

 addi r11, r3, -1 ; r11 = value - 1

 cmplwi r11, 4 ; in range of the jump table?

 bnl default ; nope, go to the "case default"

 lwz r12, n(r2) ; get address of jump table

 rlwinm r3, r3, 2, 0, 29 ; convert original value to byte offset

 addi r3, r3, -4 ; apply the offset again

 lwzx r12, r12, r3 ; load entry from jump table

 mtctr r12 ; put code address into ctr

 bctr ; and jump there

The compiler goes to the work of calculating r3 − 1 into r11, but when it comes time to look

up the jump table entry, it goes back to the original value in r3, scales it up to a byte offset,

and then has to perform an extra subtraction to cover for the fact that it shifted the wrong

value.

Raymond Chen

https://blogs.msdn.microsoft.com/oldnewthing/20180823-00/?p=99555
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

