
1/3

August 21, 2018

The PowerPC 600 series, part 12: Leaf functions
devblogs.microsoft.com/oldnewthing/20180821-00

Raymond Chen

On Windows NT for the PowerPC, there is a leaf function optimization available provided

your function meets these criteria:

It calls no other functions.

It does not have an exception handler.

It does not need any stack space beyond stack space used by actual inbound

parameters, the eight words of stack used as home space,¹ and the 232-byte red zone.

It does not modify any nonvolatile registers.

If all of these conditions are met, then the function does not need to declare any function

unwind codes, and it does not need to set up a stack frame. It can reuse the stack frame of its

caller. In order for the system to be able to unwind out of a lightweight leaf function, the leaf

function must keep its return address in the lr register throughout the entire life of the

function, and it cannot move the stack pointer.

Conversely, if you fail to declare unwind codes for a function, then the system assumes that it

is a lightweight leaf function.

Here’s a sample function that is a candidate for lightweight leaf status:

wchar_t* SkipLeadingSpacesAndTabs(wchar_t* s)

{

 while (*s == L' ' || *s == L'\t') s++;

 return s;

}

This is how the Microsoft compiler generated the code for it:

https://devblogs.microsoft.com/oldnewthing/20180821-00/?p=99535

2/3

SkipLeadingSpacesAndTabs:

 lhz r4,(r3) ; load wchar_t into r4

 cmpwi cr6,r4,0x20 ; Is it a space?

 beq cr6,loop ; Y: skip it

 cmpwi cr7,r4,9 ; Is it a tab?

 bne cr7,break ; N: done

loop:

 lhzu r4,2(r3) ; Skip over current character and load next one

 cmpwi cr6,r4,0x20 ; Is it a space?

 beq cr6,loop ; Y: skip it

 cmpwi cr7,r4,9 ; Is it a tab?

 beq cr7,loop ; Y: continue

break:

 blr ; Return to caller, result already in r3

For some reason, the Microsoft compiler likes to use cr6 and cr7 as the targets for its

comparison instructions. It probably wants to stay far away from cr0 and cr1, which are

implicitly updated by some instructions.

Notice that we used the lhzu instruction to advance the r3 register and then fetch a

halfword from it. This shows how the update version of a load instruction is handy for

walking through an array.

If we wanted to be clever, we could apply the following transformation. First, un-unroll the

loop:

SkipLeadingSpacesAndTabs:

 lhz r4,(r3) ; load wchar_t into r4

 b test

loop:

 lhzu r4,2(r3) ; Skip over current character and load next one

test:

 cmpwi cr6,r4,0x20 ; Is it a space?

 beq cr6,loop ; Y: skip it

 cmpwi cr7,r4,9 ; Is it a tab?

 beq cr7,loop ; Y: continue

break:

 blr ; Return to caller, result already in r3

This seems like a pessimization, since we introduced a branch. But now I can remove the

branch by realizing that I can trick the first iteration’s lhzu to load the first halfword of the

string rather than the second: Predecrement the value to counteract the preincrement!

3/3

SkipLeadingSpacesAndTabs:

 subi r3,r3,2 ; decrement to counteract the upcoming increment

loop:

 lhzu r4,2(r3) ; Skip over current character and load next one

 cmpwi cr6,r4,0x20 ; Is it a space?

 beq cr6,loop ; Y: skip it

 cmpwi cr7,r4,9 ; Is it a tab?

 beq cr7,loop ; Y: continue

break:

 blr ; Return to caller, result already in r3

Finally, I can combine the results of the two comparisons so there is only one branch that

needs to be predicted:

SkipLeadingSpacesAndTabs:

 subi r3,r3,2 ; decrement to counteract the upcoming increment

loop:

 lhzu r4,2(r3) ; Skip over current character and load next one

 cmpwi cr6,r4,0x20 ; Is it a space?

 cmpwi cr7,r4,9 ; Is it a tab?

 cror 4*cr7+eq,4*cr6+eq,4*cr7+eq ; Is it either?

 beq cr7,loop ; Y: continue

 blr ; Return to caller, result already in r3

I don’t know whether this performs better than the original code, but it is four instructions

shorter, consumes one fewer branch prediction slot, and simply looks cooler. I win on style

points, but I could very well lose on real-world performance.

Next time, we’ll look at common patterns for branches and calls.

¹ As I noted earlier, you are allowed to use all of the home space even if your function doesn’t

have that many parameters.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20180822-00/?p=99545
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

