
1/3

August 20, 2018

The PowerPC 600 series, part 11: Glue routines
devblogs.microsoft.com/oldnewthing/20180820-00

Raymond Chen

The PowerPC has a concept of a “glue routine”. This is a little block of code to assist with

control transfer, most of the time to allow a caller in one module to call a function in another

module. There are two things that make glue routines tricky: Jumping to the final target and

juggling two tables of contents (the caller’s and the callee’s).

Registers r11 and r12 are available to glue routines as scratch registers. You can use them in

your code, but be aware that they may be trashed by a glue routine, which means in practice

that they are good only until the next taken jump instruction. (We saw earlier that r12 is used

by prologues, but since prologues run at the start of a function, and you must have jumped

there, prologues are welcome to use r12 as a scratch register because any valid caller must

have assumed that r12 could have been trashed by a glue routine anyway.)

Let’s take care of the easy case first: Suppose the routines share the same table of contents.

This is usually the case if the caller and callee are in the same module. A glue routine may

become necessary if a branch target ends up being too far away to be reached by the original

branch, and the linker needs to insert a glue routine near the caller that in turn jumps to the

callee. (On the Alpha AXP, this is called a trampoline.)

   bl     toofar_glue

   ...


toofar_glue:

   lwz    r11, n(r2)       ; r11 = original jump target (toofar)

   mtctr  r11              ; ctr = original jump target (toofar)

   bctr                    ; and jump to toofar


Exercise: We had two choices for the register to use for the indirect jump. We could have

used ctr or lr. Why did we choose ctr?

Next is the hard part: A glue routine that needs to connect functions that may have different

tables of contents. This sort of thing happens if you naïvely import a function.

https://devblogs.microsoft.com/oldnewthing/20180820-00/?p=99525
https://blogs.msdn.microsoft.com/oldnewthing/20170807-00/?p=96766


2/3

   bl     toofar_glue

   ...


toofar_glue:

   lwz    r11, n(r2)       ; r11 = function pointer

   lwz    r12, 0(r11)      ; r12 = code pointer

   stw    r2, 4(r1)        ; save caller's table of contents

   mtctr  r12              ; ctr = code for target

   lwz    r2, 4(r11)       ; load callee's table of contents

   bctr                    ; and jump to toofar


The inter-module glue function sets up both the code pointer and the table of contents for the

destination function. But there’s the question of what to do with the old table of contents. For

now, we save it in one of the reserved words on the stack, but we’re still in trouble because

the callee will return back to the caller with the wrong table of contents. Oh no!

The solution is to have the compiler leave a nop  after every call that might be to a glue

routine that jumps to another module. If the linker determines that the call target is indeed a

glue routine, then it patches the nop to lwz r2, 4(r1)  to reload the caller’s table of

contents. So from the caller’s perspective, calling a glue routine looks like this:

   ; before

   bl     toofar           ; not sure if this is a glue routine or not

   nop                     ; so let's drop a nop here just in case


   ; after the linker inserts the glue routine

   bl     toofar_glue      ; turns out this was a glue routine after all

   ldw    r2, 4(r1)        ; reload caller's table of contents


The system also leaves the word at 8(r1)  available for the runtime, but I don’t see any code

actually using it.¹ The remaining three reserved words in the stack frame have not been

assigned a purpose yet; they remain reserved.

If the compiler can prove² that the call destination uses the same table of contents as the

caller, then it can omit the nop .

The glue code saves the table of contents at 4(r1) , but the calling function may have

already saved its table of contents on the stack, in which case saving the table of contents

again is redundant. On the other hand, if a function does not call through any function

pointers, then it doesn’t explicitly manage its table of contents because it figures the table of

contents will never need to be restored. So there’s a trade-off here: Do you force every

function to save its table of contents on the stack just in case it calls a glue routine (and teach

the linker how to fish the table of contents back out, so it can replace the nop  with the

correct reload instruction)? Or do you incur an extra store at every call to a glue routine?

Windows chose the latter. My guess is that glue routines are already a bit expensive, so

making them marginally more expensive is better than penalizing every non-leaf function

with extra work that might end up not needed after all.³



3/3

Exercise: Discuss the impact of glue routines on tail call elimination.

Next time, we’ll look at leaf functions.

¹ My guess is that intrusive code coverage/profiling tools may use it as a place to save the r11

register, thereby making r11 available to increment the coverage count. But I haven’t found

any PowerPC code coverage instrumented binaries to know for sure.

² Microsoft compilers in the early 1990’s did not support link-time code generation, so the

compiler can prove this only if the function being called resides in the same translation unit

as the caller.

³ It’s possible to eliminate most glue routines with sufficient diligence: Explicitly mark your

imported functions as __declspec(dllimport)  so that they aren’t naïvely-imported any

more. The only glue routines remaining would be the ones for calls to functions that are too

far away.

Raymond Chen

Follow







https://blogs.msdn.microsoft.com/oldnewthing/20180821-00/?p=99535
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

