
1/3

August 14, 2018

The PowerPC 600 series, part 7: Atomic memory access
and cache coherency

devblogs.microsoft.com/oldnewthing/20180814-00

Raymond Chen

On the PowerPC 600 series, memory accesses to suitably-aligned locations by a single

register are atomic,¹ meaning that even in the face of a conflicting operation on another

processor, the result will be the entire previous value or the entire final value, never a mix of

the two.

To perform atomic update operations (load-modify-store, also known as interlocked

operations), you use the lwarx and stwcx. instructions:

 lwarx rd, ra/0, rb ; load rd from ra/0 + rb and reserve

 stwcx. rd, ra/0, rb ; store rd conditionally to ra/0 + rb, update cr0

Note that the only supported addressing mode is x . No plain instruction, and no u forms.

The lwarx instruction loads a word and creates a reservation which monitors the memory

for changes. Any modification to that address or an address nearby causes the reservation to

be lost. The definition of “nearby” is left up to the processor.

The stwcx. instruction tries to store rd to memory. The store will succeed if the reservation

is still in effect and the store is to the same address as the most recent lwarx . The result of

the operation is reported in the eq bit of cr0: eq is set on success and clear on failure. The

instruction also updates the other bits of cr0 by clearing the lt and gt bits and capturing the

summary overflow bit.

Note that the stwcx. instruction ends with a dot because it implicitly updates cr0. There is

no undotted form.

Regardless of whether the store succeeded, the reservation is cleared.

If you attempt to store back to a location different from the most recent preceding lwarx ,

and the reservation is still valid, the store might or might not succeed, and the eq bit will be

unpredictable; it need not reflect the actual success of the store. So don’t do that.²

https://devblogs.microsoft.com/oldnewthing/20180814-00/?p=99485

2/3

If you’ve seen the other RISC architecture atomic operations, this should feel very familiar.

Here’s a sample interlocked increment:

 ; atomically increment the word stored at address r3

loop:

 lwarx r4, 0, r3 ; load with reservation

 addi r4, r4, 1 ; increment

 stwcx. r4, 0, r3 ; store conditional

 bne- loop ; if failed (unlikely), try again

 ; on exit r4 contains incremented value

You are allowed to abandon a reservation. For example, a compare-exchange starts with a

reservation, but if the value is incorrect, it just gives up without ever storing anything.

 ; if the word at r3 is equal to r4, then replace it with r5

loop:

 lwarx r6, 0, r3 ; load with reservation

 cmpw r6, r4 ; contains correct value?

 bne- stop ; if not, then give up

 stwcx. r5, 0, r3 ; store conditional

 bne- loop ; if failed (unlikely), try again

stop:

 ; r6 contains previous value stored at r3

As noted above, simple accesses to suitably-aligned locations are atomic, and you can use the

lwarx / stwcx. instructions to construct more complex atomic operations, but none of

those instructions impose any memory ordering. In practice, the interlocked operations will

usually erect a memory barrier before and/or after the atomic update.

 sync ; full memory barrier

 isync ; acquire

 lwsync ; release

The sync instruction is a full memory barrier.

The isync instruction officially discards prefetch, but that has a side effect of preventing

future memory operations from starting (because they were discarded), which is effectively

an acquire. You usually use it after taking a lock, so that reads intended to be under the lock

do not get advanced to before the lock is taken.

The lwsync waits for preceding loads and stores to complete, but allows future loads to

start. You usually use it just before releasing a lock, so that all accesses that were intended to

be protected by the lock are finished before the lock is dropped.

And then there’s this guy:

 eieio ; enforce in-order execution of I/O

3/3

This instruction is so famous it has its own Wikipedia page. Somebody worked really hard to

backronym that mnemonic. It’s intended as a memory barrier for memory-mapped I/O, but

it is generally useful as well. It acts like a lightweight lwsync : It ensures that all pending

stores are completed, but it does not prevent future loads from starting or force preceding

loads to complete. You can use this just before exiting a lock if the purpose of the lock was to

update some data rather than to read some data. The compiler, of course, doesn’t usually

have this level of insight into your code, so you’re unlikely to see this in practice.

There are other types of barriers but you’re not likely to encounter them. There are also

special instructions to tell the processor that you’ve written new code to memory, so it should

discard any prefetch or instruction cache.

When reading code, you don’t need to worry too much about the distinctions between these

different types of barriers. You can assume that the compiler used the correct barrier. (Well,

unless you’re chasing a compiler bug.)

The PowerPC permits implementations to have separate I-cache and D-cache, so you cannot

assume that writing code to memory will immediately take effect at execution. You have to

explicitly tell the processor that instructions have changed. This is mostly relevant only for

jitters, so I won’t go into details. I never had to debug a jitter on this guy, and even if I were

called upon to do it, I’d just assume that whoever wrote the memory barrier stuff knew what

they were doing.

Next time, we’ll look at control flow instructions and their absurd mnemonics.

¹ Although not available in little-endian mode, there are instructions in big-endian mode that

can load and store multiple registers. Each individual register access is atomic if suitably

aligned, but the entire operation is not.

² Interrupts and traps do not clear the reservation. This means that if the operating system

wants to perform a context switch, it needs to perform a stwcx. to a harmless location to

force the reservation to be cleared. Otherwise, the thread being switched to might be in the

middle of an atomic operation, and its stwcx. might succeed based on the previous

thread’s reservation! This is a rare case where you will intentionally perform a stwcx. to an

address that doesn’t match the preceding lwarx .

Raymond Chen

Follow

https://en.wikipedia.org/wiki/Enforce_In-order_Execution_of_I/O
https://en.wikipedia.org/wiki/Old_MacDonald_Had_a_Farm
https://blogs.msdn.microsoft.com/oldnewthing/20180815-00/?p=99495
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

