
1/4

August 13, 2018

The PowerPC 600 series, part 6: Memory access
devblogs.microsoft.com/oldnewthing/20180813-00

Raymond Chen

The PowerPC 600 series has two addressing modes. We will demonstrate them with the

lwz instruction, which loads a word from memory.

 lwz rd, disp16(ra/0) ; load word from memory at ra/0 + (int16_t)disp16

 lwzx rd, ra/0, rb ; load word from memory at ra/0 + rb

The regular load instruction fetches a word from a memory location specified by a register

and a signed 16-bit displacement. By convention, if no displacement is given, it is assumed to

be zero. The Windows disassembler displays the displacement in hex without a 0x prefix,

but I’m going to put the prefix in to minimize confusion.

The indexed load instruction adds two registers to determine the address from which to load

the word. Note that you cannot use r0 as the base register for the load; if you try to use it, it

comes out as zero.¹

Both of the instructions can be suffixed with u (“update”) to set the ra register equal to the

effective address of the load. (If an exception occurs on the memory access, the ra register is

not updated. This allows the instruction to be restarted.)

 lwzu rd, disp16(ra) ; load word from memory at ra + (int16_t)disp16

 ; and then set ra equal to ra + (int16_t)disp16

 ; ra may not be r0 or rd

 lwzxu rd, ra, rb ; load word from memory at ra + rb

 ; and then set ra equal to ra + rb

 ; ra may not be r0 or rd

The ra register cannot be r0 because r0 acts like the zero register during effective address

calculations, and it would make no sense to update the zero register. The ra register cannot

be the same register as rd because that would create a conflict between the two output

registers.

The lwzu instruction is handy if you’re walking through an array, since it lets you step to

the next item and fetch a word from it in a single instruction.

https://devblogs.microsoft.com/oldnewthing/20180813-00/?p=99475

2/4

Okay, so here are the ways you can load data from memory. I will present only the basic form

of the instruction, but understand that x , u , and xu forms are also available.

 lbz rd, disp16(ra/0) ; load byte and zero extend

 lhz rd, disp16(ra/0) ; load halfword and zero extend

 lwz rd, disp16(ra/0) ; load word and zero extend

 lha rd, disp16(ra/0) ; load halfword and sign extend

 ; (a = "arithmetic")

There is a bonus sign-extending load of halfwords, but sadly no sign-extending load of bytes.

Why does the lwz instruction say “and zero extend” even though there’s nowhere to extend

to? Because there would be a place to extend to if running on a 64-bit version of the

processor. (Windows NT runs the processor in 32-bit mode, but the 64-bit registers are

available if the processor supports them.)

There is a corresponding set of store instructions.

 stb rd, disp16(ra/0) ; store byte

 sth rd, disp16(ra/0) ; store halfword

 stw rd, disp16(ra/0) ; store word

 ; also "x", "u", and "xu" variants.

In particular, the stwu instruction is extremely handy when setting up your stack frame,

which we’ll see later when we learn about software conventions.

All loads and stores should be to suitably-aligned locations. The architecture permits but

does not require the processor to support unaligned memory access in little-endian mode,

and even if it does support unaligned loads, it might do so only partially. (For example, it

might support unaligned loads provided they do not span multiple cache lines.) As noted

earlier, if an unaligned store crosses into an invalid page, the processor is permitted to store

the valid part before the exception is raised. If the processor does not support an unaligned

operation, it will trap, and the kernel will emulate it.

There are no special instructions for assisting with unaligned loads. You’re on your own:

3/4

 ; load halfword unaligned from n(r3) into r4 with zero extension

 ; requires a scratch register r5.

 lbz r4, n(r3) ; r4 = least significant byte

 lbz r5, n+1(r3) ; r5 = most significant bytes

 rlwimi r4, r5, 8, 0, 23 ; merge together

 ; load halfword unaligned from n(r3) into r4 with sign extension

 ; requires a scratch register r5.

 lbz r4, n(r3) ; r4 = least significant byte

 lba r5, n+1(r3) ; r5 = most significant bytes (sign extended)

 rlwimi r4, r5, 8, 0, 23 ; merge together

 ; load word unaligned from n(r3) into r4

 ; requires a scratch register r5.

 lbz r4, n(r3) ; r4 = least significant byte

 lbz r5, n+1(r3) ; r5 = next most significant byte

 rlwimi r4, r5, 8, 16, 23 ; merge together

 lbz r5, n+2(r3) ; r5 = next most significant byte

 rlwimi r4, r5, 16, 8, 15 ; merge together

 lbz r5, n+3(r3) ; r5 = most significant byte

 rlwimi r4, r5, 24, 0, 7 ; merge together

To load an unaligned value, you load up the individual bytes and merge them using rlwimi .

 ; store halfword unaligned from r4 to n(r3)

 stb r4, n(r3) ; store least significant byte

 rlwinm r4, r4, 24, 0, 31 ; rotate right 8 bits

 stb r4, n+1(r3) ; store next significant byte

 rlwinm r4, r4, 8, 0, 31 ; rotate back to original value

 ; (in case you still need the value)

 ; store word unaligned from r4 to n(r3)

 stb r4, n(r3) ; store least significant byte

 rlwinm r4, r4, 24, 0, 31 ; rotate right 8 bits

 stb r4, n+1(r3) ; store next significant byte

 rlwinm r4, r4, 24, 0, 31 ; rotate right 8 bits

 stb r4, n+2(r3) ; store next significant byte

 rlwinm r4, r4, 24, 0, 31 ; rotate right 8 bits

 stb r4, n+3(r3) ; store next significant byte

 rlwinm r4, r4, 24, 0, 31 ; rotate back to original value

 ; (in case you still need the value)

To store an unaligned value, you store the individual bytes. Since the stb instruction stores

the last significant byte, each byte of value takes its turn in the least significant position. In

practice, you are more likely to see the compiler extract the bytes into a separate register to

avoid long dependency chains, at the cost of an additional register.

4/4

 ; store halfword unaligned from r4 to n(r3), using r5 as scratch

 stb r4, n(r3) ; store least significant byte

 rlwinm r5, r4, 24, 0, 31 ; extract next significant byte

 stb r5, n+1(r3) ; store next significant byte

 ; store word unaligned from r4 to n(r3), using r5 as scratch

 stb r4, n(r3) ; store least significant byte

 rlwinm r5, r4, 24, 0, 31 ; extract next significant byte

 stb r5, n+1(r3) ; store next significant byte

 rlwinm r5, r4, 16, 0, 31 ; extract next significant byte

 stb r5, n+2(r3) ; store next significant byte

 rlwinm r5, r4, 8, 0, 31 ; extract next significant byte

 stb r5, n+3(r3) ; store next significant byte

Okay, back to addressing modes: Treating r0 as zero for effective address computations gives

you absolute addressing to the lowest and highest 32KB of memory. This isn’t particularly

useful in Windows NT, but I can see how it would be handy in an embedded system where

there is no virtual memory. You could map the ROM to the low 32KB and RAM to the high

32KB, and now you have absolute addressing to your entire system.

If you need absolute addressing to anything outside the top and bottom 32KB of address

space, you’ll have to do something else. One way is to build up the address as a 32-bit

constant, like we saw earlier. But the PowerPC takes a different approach: By convention, the

r2 register contains a value called the table of contents. But there are some other topics I

want to get through before I dig into the Windows NT software conventions, so you’ll have to

be a bit patient.

Bonus chatter: There are additional instructions available in big-endian mode for loading

and storing multiple registers, but they are not available in little-endian mode, so I won’t

cover them.

¹ Though if you really wanted to perform a load from r0, I guess you could use the indexed

load

 lwzx rd, 0, r0 ; load word from memory at 0 + r0

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933
https://blogs.msdn.microsoft.com/oldnewthing/20180814-00/?p=99485
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

