
1/6

August 8, 2018

The PowerPC 600 series, part 3: Arithmetic
devblogs.microsoft.com/oldnewthing/20180808-00

Raymond Chen

Before we start with arithmetic, we need to have a talk about carry.

The PowerPC uses true carry for both addition and subtraction. This is different from the x86

family of processors, for which the carry flag is actually a borrow bit when used in

subtraction. You can read more about the difference on Wikipedia. There are some

instructions which perform a combined addition and subtraction, and in that case, the only

sane choice is to use true carry. (If you had chosen carry as borrow, then it wouldn’t be clear

whether the final carry bit represented the carry from the addition or the borrow from

subtraction.)

To emphasize the fact that the PowerPC uses true carry, I will rewrite all subtractions as

additions, taking advantage of the twos complement identity

 -x = ~x + 1

Okay, now we can do some arithmetic. Let’s start with addition.

 add rd, ra, rb ; rd = ra + rb

 add. rd, ra, rb ; rd = ra + rb, update cr0

 addo rd, ra, rb ; rd = ra + rb, update XER overflow bits

 addo. rd, ra, rb ; rd = ra + rb, update cr0 and XER overflow bits

These instructions add two source registers and optionally update the xer register to capture

any possible overflow (by appending an o), and also optionally update the cr0 register to

reflect the sign of the result and any summary overflow (by appending a period).

I don’t know what they were thinking, using an easily-overlooked mark of punctuation to

carry important information.

There is also a version of the above instruction that takes a signed 16-bit immediate:

 addi rd, ra/0, imm16 ; rd = ra/0 + (int16_t)imm16

Note that this variant does not accept o or . suffixes.

https://devblogs.microsoft.com/oldnewthing/20180808-00/?p=99445
https://en.wikipedia.org/wiki/Carry_flag#Carry_flag_vs._borrow_flag

2/6

The ra/0 notation means “This can be any general purpose register, but if you ask for r0, you

actually get the constant zero.” The register r0 is weird like that. Sometimes it stands for

itself, but sometimes it reads as zero. As a result, the r0 register isn’t used much.

The assembler lets you write r0 through r31 as synonyms for the integers 0 through 31, so the

following are equivalent:

 add r3, r0, r4 ; r3 = r0 + r4

 add 3, 0, 4 ; r3 = r0 + r4

 add r3, r0, 4 ; r3 = r0 + r4

This can get very confusing. That last example sure looks like you’re setting r3 to r0 plus 4,

but it’s not. The 4 is in a position where a register is expected, so it actually means r4.

Similarly, you might think you’re adding an immediate to r0 when you write

 addi r3, r0, 256 ; r3 = r0 + 256, right?

but nope, the value of 0 as the second operand to addi is interpreted as the constant zero,

not register number zero.

Fortunately, the Windows disassembler always calls registers by their mnemonic rather than

by number.

Wait, we’re not done with addition yet.

 ; add and set carry

 addc rd, ra, rb ; rd = ra + rb, update carry

 addc. rd, ra, rb ; rd = ra + rb, update carry and cr0

 addco rd, ra, rb ; rd = ra + rb, update carry and XER overflow
bits

 addco. rd, ra, rb ; rd = ra + rb, update carry and cr0 and XER overflow
bits

The “add and set carry” instructions act like the corresponding regular add instructions,

except that the also update the carry bit in xer based on whether a carry propagated out of

the highest-order bit.

 ; add extended

 adde rd, ra, rb ; rd = ra + rb + carry, update carry

 adde. rd, ra, rb ; rd = ra + rb + carry, update carry and cr0

 addeo rd, ra, rb ; rd = ra + rb + carry, update carry and XER
overflow bits

 addeo. rd, ra, rb ; rd = ra + rb + carry, update carry and cr0 and XER
overflow bits

The “add extended” instructions act like the corresponding “add and set carry” instructions,

except that they also add 1 if the carry bit was set. This makes multiword addition

convenient.

3/6

 ; add minus one extended

 addme rd, ra ; rd = ra + carry + ~0, update carry

 addme. rd, ra ; rd = ra + carry + ~0, update carry and cr0

 addmeo rd, ra ; rd = ra + carry + ~0, update carry and XER
overflow bits

 addmeo. rd, ra ; rd = ra + carry + ~0, update carry and cr0 and XER
overflow bits

The “add minus one extended” instruction is like “add extended” except that the second

parameter is hard-coded to −1. I wrote ~0 instead of −1 to emphasize that we are using true

carry. (This is the combined addition-and-subtraction instruction I alluded to at the top of

the article. It adds carry and then subtracts one.) Added: As commenter Neil noted below,

through the magic of true carry, this is the same as “subtract zero extended”, which makes it

handy for multiword arithmetic.

 ; add zero extended

 addze rd, ra ; rd = ra + carry, update carry

 addze. rd, ra ; rd = ra + carry, update carry and cr0

 addzeo rd, ra ; rd = ra + carry, update carry and XER overflow
bits

 addzeo. rd, ra ; rd = ra + carry, update carry and cr0 and XER overflow
bits

The “add zero extended” instruction is like “add extended” except that the second parameter

is hard-coded to zero.

And then there are some instructions that take signed 16-bit immediates:

 ; add immediate shifted

 addis rd, ra/0, imm16 ; rd = ra/0 + (imm16 << 16)

 ; add immediate and set carry

 addic rd, ra, imm16 ; rd = ra + (int16_t)imm16, update carry

 ; add immediate and set carry and update cr0

 addic. rd, ra, imm16 ; rd = ra + (int16_t)imm16, update carry and cr0

Phew, that was addition. There are also subtraction instructions, which should look mostly

familiar now that you’ve seen addition.

4/6

 ; subtract from

 subf rd, ra, rb ; rd = ~ra + rb + 1

 subf. rd, ra, rb ; rd = ~ra + rb + 1, update cr0

 subfo rd, ra, rb ; rd = ~ra + rb + 1, update XER overflow bits

 subfo. rd, ra, rb ; rd = ~ra + rb + 1, update cr0 and XER overflow bits

 ; subtract from and set carry

 subfc rd, ra, rb ; rd = ~ra + rb + 1, update carry

 subfc. rd, ra, rb ; rd = ~ra + rb + 1, update carry and cr0

 subfco rd, ra, rb ; rd = ~ra + rb + 1, update carry and XER
overflow bits

 subfco. rd, ra, rb ; rd = ~ra + rb + 1, update carry and cr0 and XER
overflow bits

 ; subtract from extended

 subfe rd, ra, rb ; rd = ~ra + rb + carry, update carry

 subfe. rd, ra, rb ; rd = ~ra + rb + carry, update carry and cr0

 subfeo rd, ra, rb ; rd = ~ra + rb + carry, update carry and XER
overflow bits

 subfeo. rd, ra, rb ; rd = ~ra + rb + carry, update carry and cr0 and XER
overflow bits

 ; subtract from minus one extended

 subfme rd, ra ; rd = ~ra + carry + ~0, update carry

 subfme. rd, ra ; rd = ~ra + carry + ~0, update carry and cr0

 subfmeo rd, ra ; rd = ~ra + carry + ~0, update carry and XER
overflow bits

 subfmeo. rd, ra ; rd = ~ra + carry + ~0, update carry and cr0 and XER
overflow bits

 ; subtract from zero extended

 subfze rd, ra ; rd = ~ra + carry, update carry

 subfze. rd, ra ; rd = ~ra + carry, update carry and cr0

 subfzeo rd, ra ; rd = ~ra + carry, update carry and XER overflow
bits

 subfzeo. rd, ra ; rd = ~ra + carry, update carry and cr0 and XER overflow
bits

 ; subtract from immediate and set carry

 subfic rd, ra, imm16 ; rd = ~ra + (int16_t)imm16 + 1, update carry

Note that the instruction is “subtract from”, not “subtract”. The second operand is subtracted

from the third operand; in other words, the two operands are backwards. Fortunately, the

assembler provides a family of synthetic instructions that simply swap the last two operands:

 subf rd, rb, ra ; sub rd, ra, rb

 ; similarly "sub.", "subo", and "subo.".

 subfc rd, rb, ra ; subc rd, ra, rb

 ; similarly "subc.", "subco", and "subco.".

5/6

Second problem is that there is no subfis to subtract a shifted immediate, nor is there

subfic. to update flags after subtracting from an immediate. But the assembler can

synthesize those too:

 addi rd, ra/0, -imm16 ; subi rd, ra/0, imm16

 addis rd, ra/0, -imm16 ; subis rd, ra/0, imm16

 addic rd, ra, -imm16 ; subic rd, ra, imm16

 addic. rd, ra, -imm16 ; subic. rd, ra, imm16

PowerPC’s use of true carry allows this trick to work while still preserving the semantics of

carry and overflow.

We wrap up with multiplication and division.

 ; multiply low immediate

 mulli rd, ra, imm16 ; rd = (int32_t)ra * (int16_t)imm16

 ; multiply low word

 mullw rd, ra, rb ; rd = (int32_t)ra * (int32_t)rb

 ; also "mullw.", "mullwo", and "mullwo.".

 ; multiply high word

 mulhw rd, ra, rb ; rd = ((int32_t)ra * (int32_t)rb) >> 32

 ; also "mulhw."

 ; multiply high word unsigned

 mulhwu rd, ra, rb ; rd = ((uint32_t)ra * (uint32_t)rb) >> 32

 ; also "mulhwu."

The “multiply low” instructions perform the multiplication and return the low-order 32 bits.

The “multiply high” instructions return the high-order 32 bits.

Finally, we have division:

 ; divide word

 divw rd, ra, rb ; rd = (int32_t)ra ÷ (int32_t)rb

 ; also "divw.", "divwo", and "divwo.".

 ; divide word unsigned

 divwu rd, ra, rb ; rd = (uint32_t)ra ÷ (uint32_t)rb

 ; also "divwu.", "divwuo", and "divwuo.".

If you try to divide by zero or (for divw) if you try to divide 0x80000000 by −1, then the

results are garbage, and if you used the o version of the instruction, then the overflow flag is

set. No trap is generated. (If you didn’t use the o version, then you get no indication that

anything went wrong. You just get garbage.)

There is no modulus instruction. If you want to get the remainder, take the quotient, multiple

it by the divisor, and subtract it from the dividend.

6/6

Okay, that was arithmetic. Next up are the bitwise logical operators and combining

arithmetic and logical operators to load constants.

Bonus snark: For a reduced instruction set computer, it sure has an awful lot of

instructions. And we haven’t even gotten to control flow yet.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

