
1/3

August 2, 2018

Creating an awaitable lock for C++ PPL tasks
devblogs.microsoft.com/oldnewthing/20180802-00

Raymond Chen

The C# language (well, more accurately, the BCL) has the ReaderWriterLockSlim class

which has a WaitAsync method which returns a task that completes asynchronously when

the lock has been acquired. I needed an equivalent for the Parallel Patterns Library (PPL),

and since I couldn’t find one, I ended up writing one. (If you can find one, please let me

know!)

https://devblogs.microsoft.com/oldnewthing/20180802-00/?p=99395
https://msdn.microsoft.com/en-us/library/system.threading.semaphoreslim(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.threading.semaphoreslim(v=vs.110).aspx

2/3

// AsyncUILock is a nonrecursive lock that can be waited on

// asynchronously from a UI thread.

class AsyncUILock

{

public:

 Concurrency::task<void> WaitAsync()

 {

 std::lock_guard<std::mutex> guard(mutex);

 if (!locked) {

 // Lock is available. Acquire it.

 locked = true;

 return completed_apartment_aware_task();

 }

 // Lock is not available.

 return completed_apartment_aware_task()

 .then([captured_completion = completion] {

 // Wait for it to become available.

 return Concurrency::create_task(captured_completion);

 }).then([this] {

 // Then try again.

 return WaitAsync();

 });

 }

 void Release()

 {

 std::lock_guard<std::mutex> guard(mutex);

 locked = false;

 auto previousCompletion = completion;

 completion = Concurrency::task_completion_event<void>();

 previousCompletion.set();

 }

private:

 std::mutex mutex;

 bool locked = false;

 Concurrency::task_completion_event<void> completion;

};

The object consists of a std::mutex which protects the internal state, a flag that indicates

whether the object has been claimed, and a task completion event that we use to signal

anybody waiting on the lock that they should check again.

I could have used an SRWLock instead of a std::mutex , but I was lazy and wanted to take

advantage of the existing std::lock_guard .

You can perform async waits on this object in the usual manner. For example:

https://devblogs.microsoft.com/oldnewthing/

3/3

AsyncUILock lock;

void DoSomething()

{

 lock.WaitAsync().then([]{

 // do something with the lock held.

 lock.Release();

 });

}

or if you prefer co_await (and you probably do):

AsyncUILock lock;

void DoSomething()

{

 co_await lock.WaitAsync();

 // do something with the lock held.

 lock.Release();

}

At this point, you might decide to return an RAII type to ensure that the lock doesn’t leak. I’ll

leave that as an exercise.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

