
1/2

August 1, 2018

Creating an apartment-aware PPL task from nothing
devblogs.microsoft.com/oldnewthing/20180801-00

Raymond Chen

In the Parallel Patterns Library (PPL) of the Concurrency Runtime, there are these things

called task s. Some tasks are apartment-aware, which means that the default continuation

context will execute the task continuation in the same COM apartment that queued the

continuation. Otherwise, the task is not apartment-aware, which means that the default

continuation context is arbitrary: The concurrency runtime will execute the task continuation

in a thread of its choosing.

If you are working with objects that have thread affinity, you are operating on a single-

threaded apartment (STA), and you need the continuation to run on that same thread so that

you still have access to those objects.

The rule used by the Concurrency Runtime is that tasks which are derived from IAsync‐

Action or IAsyncOperation<T> are apartment-aware, and others are not.

Okay, so it’s easy to create a non-apartment-aware completed task.

Concurrency::task<void> completed_non_apartment_aware_task()

{

return Concurrency::task_from_result();

}

There is already a function in the Parallel Patterns Library for creating a completed task, and

the result is a non-apartment-aware task.

The hard part is creating an apartment-aware completed task. Here’s what I came up with:

Concurrency::task<void> completed_apartment_aware_task()

{

 Concurrency::create_task(Concurrency::create_async([]{}));

}

Working from the inside out: We start with a lambda that does nothing. We use

create_async to wrap that lambda inside an IAsyncAction . Then we use create_task

to wrap the IAsyncAction inside a task .

https://devblogs.microsoft.com/oldnewthing/20180801-00/?p=99385
https://msdn.microsoft.com/en-us/library/hh749968.aspx#task_continuation_context::use_default%20Method
https://msdn.microsoft.com/en-us/library/hh749968.aspx#task_continuation_context::use_arbitrary%20Method

2/2

It’s not pretty, but it works.

Now you can write things like

 completed_apartment_aware_task()

 .then([this]()

 {

 // something

 }).then([this](int result)

 {

 // something

 });

and all of the something s will run on the same apartment as the code that started the task

chain.

This is particularly handy when you want to run a task conditionally on a UI thread. For the

branch where you don’t want a task, you still have to make one, and you want it to be

apartment-aware, so that your UI code stays on the UI thread.

Concurrency::task<void> MaybeDoSomethingAsync()

{

 if (condition) {

 return Concurrency::create_task(...);();

 } else {

 return completed_apartment_aware_task();

 }

}

In the case where the condition is false, you still have to return a task, and you want it to be

an apartment-aware task.

Bonus chatter: This little detour through IAsyncAction is necessary only if you are using

concurrency::task::then() to attach continuations.

If you use co_await with Concurrency::task , then the pplawait.h header file

controls how the continuation is scheduled, and it uses

task_continuation_context::get_current_winrt_context() to schedule the

continuation, which means that the task continues in the same apartment.

If you use co_await with C++/winrt, then the continuation runs in the same apartment,

although there are special awaitable objects for explicitly moving between apartments.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/windows/uwp/cpp-and-winrt-apis/concurrency
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

