
1/3

June 20, 2018

When I intentionally create a stack overflow with
SendMessage, why do I sometimes not get a stack
overflow?

devblogs.microsoft.com/oldnewthing/20180620-00

Raymond Chen

Take our scratch program and make these changes:

LRESULT CALLBACK

WndProc(HWND hwnd, UINT uiMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uiMsg) {

 ...

 case WM_APP: return SendMessage(hwnd, WM_APP, 0, 0) + 1;

 }

 return DefWindowProc(hwnd, uiMsg, wParam, lParam);

}

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

 ...

 ShowWindow(hwnd, nShowCmd);

 SendMessage(hwnd, WM_APP, 0, 0);

 MessageBox(hwnd, TEXT("Will this appear?"), TEXT("Hey"), MB_OK);

 while (GetMessage(&msg, NULL, 0, 0)) {

 ...

 }

 ...

}

This program enters infinite recursion upon receipt of the WM_ APP message by sending

itself another copy of the same message. We add one to the returned value to make sure

there’s no tail call elimination.

https://devblogs.microsoft.com/oldnewthing/20180620-00/?p=99055
https://blogs.msdn.microsoft.com/oldnewthing/20030723-00/?p=43073

2/3

After the program creates the window, it starts the death spiral by sending the first

WM_ APP message. And then after the deadly message, it displays a message.

The question: What happens? Do you see the message?

When you run the program, you might see the message, or you might crash. It depends on

which resource runs out first: The user-mode stack or the kernel-mode stack.

Sending a message consumes some stack in user-mode, because you’re calling the Send‐

Message function, and that does some work in user mode before calling into kernel mode to

do the actual message sending.

Upon entry into kernel mode, some more stack is consumed to do the kernel-mode

processing, like looking up which thread should be chosen to handle the message and

dispatching any active window hooks. In this case, the destination window belongs to the

same thread, so the kernel simulates a call into user mode and transitions back to user mode

at a function whose job it is to call the window procedure.

Now we’re back in user mode, and the helper function calls the window procedure, which

allocates a stack frame, detects that the message is WM_ APP , and calls SendMessage , and

the process repeats.

When does this end?

On entry to kernel mode, the kernel checks how much kernel-mode stack is still available,

and if there isn’t enough to send a message, then the kernel says, “Whoa, I’m not going to be

able to do this SendMessage thing, so I’m going to fail the call.” The kernel-mode portion of

the SendMessage function returns zero, and that causes SendMessage to return zero

instead of sending the message.

On the other hand, there is no such preflight check in user mode. User mode just keeps

running until it runs out of stack, at which point a STATUS_STACK_OVERFLOW exception is

raised. Assuming nobody handles this exception, the program crashes.

It comes down to a race to see which limited resource runs out first. If the kernel-mode stack

runs out first, then one of the SendMessage calls will return zero without actually sending

the message, at which point the entire call stack unwinds, and then execution resumes at the

call to MessageBox . On the other hand, if the user-mode stack runs out first, then you get a

stack overflow exception.

Your program has some control over how much user-mode stack is consumed at each

recursion, because some of that stack usage comes from your own window procedure. So if

you keep your window procedure’s stack usage low, then you’re more likely to run out of

kernel mode stack first.

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugging-a-stack-overflow

3/3

But wait, there’s still another wrinkle that introduces a level of unpredictability to the

calculations. We’ll dig deeper next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

