
1/4

June 15, 2018

Is there a problem with CreateRemoteThread on 64-bit
systems?

devblogs.microsoft.com/oldnewthing/20180615-00

Raymond Chen

Back in the days when it was still fashionable to talk about the Itanium, a customer reported

that the CreateRemoteThread function didn’t work. The customer explained that any

attempt to call the CreateRemoteThread function results in the target process being

terminated. When they attempt to create a remote thread in Explorer, then the Explorer

process crashes. When they attempt to create a remote thread in lsass.exe , lsass.exe

process crashes, and the system restarts. They included a sample program that demonstrated

the problem.

https://devblogs.microsoft.com/oldnewthing/20180615-00/?p=99025

2/4

// Code in italics is wrong. In fact, this is so wrong

// I've intentionally introduced compiler errors so you

// can't possibly use it in production.

struct UsefulInfo {

 int thing1;

 int thing2;

};

DWORD RemoteThreadProc(void* lpParameter)

{

 UsefulInfo* info =

 reinterpret_cast<UsefulInfo*>(lpParameter);

 blah blah blah

 try {

 blah blah blah

 } catch (...) {

 blah blah blah

 }

 return 0;

}

// This symbol lets us find the end of the RemoteThread function.

static void EndOfRemoteThreadProc() { }

// Error checking removed for simplicity of exposition.

void InjectTheThread(

 UsefulInfo* info,

 HANDLE targetProcess)

{

 // Calculate the size of the function.

 DWORD codeSize = (DWORD)EndOfRemoteThreadProc - (DWORD)RemoteThreadProc;

 // Allocate an executable buffer in the target process.

 BYTE* codeBuffer = VirtualAllocEx(targetProcess,

 codeSize + sizeof(*info),

 PAGE_EXECUTE_READWRITE);

// Copy the useful information to the target process

WriteProcessMemory(targetProcess, codeBuffer,

 info, sizeof(*info));

// Followed by the code

WriteProcessMemory(targetProcess, codeBuffer + sizeof(*info),

 (void*)RemoteThreadProc, codeSize);

// Execute it and pass a pointer to the useful information.

CreateRemoteThread(targetProcess,

 codeBuffer + sizeof(*info), codeBuffer);

}

There is so much wrong with this code it’s hard to say where to start.

https://www.amazon.com/dp/B00BLS4952?tag=tholneth-20

3/4

There’s no guarantee that all the code in the RemoteThreadProc function is contiguous.

The compiler might choose to spread it out into multiple chunks, possibly based on Profile-

Guided Optimizations.

Similarly, there is no guarantee that the EndOfRemoteThreadProc function will be placed

immediately after RemoteThreadProc function in memory.

There is no guarantee that the code in the RemoteThreadProc function is position-

independent.

There is no guarantee that the code in the RemoteThreadProc function is self-contained.

There may be supporting data in the read-only data segment, such as jump tables for switch

statements.

The RemoteThreadProc function uses C++ exception handling, but the code didn’t inject

the C runtime support library or fix up the references to the runtime library.

The code didn’t register any exception tables for the dynamically-generated code. x86 is the

only architecture that does not require explicit exception vector registration. Everybody else

uses table-based exception handling.

Now some ia64-specific remarks.

Function pointers on ia64 don’t point to the first byte of code, so subtracting function

pointers doesn’t give you any information about the size of the function (whatever that

means), and copying data starting at the function pointer does not actually copy any code.

Conversely, when you take a pointer to a block of memory that contains code and treat it as a

function pointer, you are actually causing the first two 8-byte values at that address to be

interpreted as a global pointer and a code address. This results in a garbage global pointer,

and code executing from a random location.

The copied code doesn’t start at a multiple of 16. Code on ia64 must be 16-byte-aligned.

In general the CreateRemoteThread function requires deep knowledge of the machine

architecture. Its intended audience was debugggers, which are already well-versed in the

details of the machine architecture.

We encouraged the customer to avoid the CreateRemoteThread function entirely. In

particular, using it with critical system processes like lsass.exe is a serious issue for

system reliability. Faults in that process can bring the whole system down (as the customer

observed), or cause other strange behavior like damaging parts of the security infrastructure,

which will lead to hard-to-debug authentication problems at best and full-fledged security

vulnerabilities at worst. And the system may in the future take stronger steps to prevent code

injection and data tampering in critical system processes, so a design based on Create‐

https://docs.microsoft.com/en-us/cpp/build/reference/profile-guided-optimizations

4/4

RemoteThread is living on borrowed time. It’s not clear what the customer is trying to do,

but they should investigate whether there are supported extensibility mechanisms that give

them what they want.

The customer replied that their product contains important functionality that they have

constructed out of the CreateRemoteThread function, and they cannot afford to abandon it

at this point.

Customers like this scare me.

(The customer liaison never revealed the name of the customer, but I did learn that they

develop anti-malware software. So now I’m even more scared. Fortunately, fixing this code to

work on Itanium became a moot issue, but I still worry about their x64 version, because

many of the issues here also apply to x64.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

