
1/2

June 8, 2018

Why does GetServiceDisplayNameA report a larger
required buffer size than actually necessary?

devblogs.microsoft.com/oldnewthing/20180608-00

Raymond Chen

If you call the GetServiceDisplayNameA function (the ANSI version), it reports a buffer

size far larger than what appears to be necessary.

For example, if the service display name is awesome , you would expect that the required

buffer size is seven characters, one for each character in "awesome" . (The GetService‐

DisplayNameA function does not count the terminating null; it expects you to add one

yourself.)

But instead, the GetServiceDisplayNameA function says that you need fourteen

characters. And then when you give it a buffer that is fifteen characters long, it fills in only

eight of them, and then says “Ha ha, I wrote only seven characters (plus the terminating

null). Silly you allocated far more memory than you needed to, sucka!”

Why is it reporting a required buffer size larger than what it actually needs?

Because character set conversion is hard.

When you call the GetServiceDisplayNameA function (ANSI version), it forwards the call

to GetServiceDisplayNameW function (Unicode version). If the Unicode version says,

“Sorry, that buffer is too small; it needs to be big enough to hold N Unicode characters,” the

ANSI version doesn’t know how many ANSI characters that translates to. A single Unicode

character could expand to as many as two ANSI characters in the case where the ANSI code

page is DBCS. The GetServiceDisplayNameA function plays it safe and takes the worst-

case scenario that the service display name consists completely of Unicode characters which

require two ANSI characters to represent.

That’s why it over-reports the buffer size.

When you call it with a buffer that is fifteen characters long, the GetServiceDisplayNameA

function calls the GetServiceDisplayNameW function, which says, “No problem, here’s

your display name. It’s seven Unicode characters long.” The GetServiceDisplayNameA

function then converts it from Unicode to ANSI, and it turns out that it requires only seven

https://devblogs.microsoft.com/oldnewthing/20180608-00/?p=98945
https://devblogs.microsoft.com/oldnewthing/

2/2

characters plus the terminating null. Hm, how about that. Okay, well here’s your seven-

character string. Sorry about the extra seven characters you allocated. I asked you to allocate

them just in case.

Bonus chatter: These worst-case calculations will break if the ANSI code page were ever

UTF-8, because the worst-case expansion becomes three UTF-8 code units for one UTF-16

code unit, rather than just two to one for DBCS code pages. These types of assumptions about

the worst-case scenario are buried throughout tens of millions of lines of source code.

Finding them is quite a challenge.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

