
1/4

May 16, 2018

C++ namespace parlor tricks
devblogs.microsoft.com/oldnewthing/20180516-00

Raymond Chen

These tricks may be obvious, but at least I’m going to write them down.

It is common to import an entire namespace into the global namespace. I’m not saying it’s a

good idea, but it is common. The most notorious example is to put

using namespace std;

to import the std namespace into the global namespace.

When working with the Windows Runtime, you often have rather deep namespaces. For

example, we saw some time ago that we were operating in the Windows::System::

Profile::SystemManufacturers namespace. This is quite a mouthful, and it is common

to put a

using namespace Windows::System::Profile::SystemManufacturers;

in your program just to save yourself the hassle of typing it all out.

However, things get complicated if you create name collisions.

For example, if you are using WRL, you will be working with the ABI::Windows::

System::Profile::SystemManufacturers namespace, but if you do a

using namespace ABI::Windows::System::Profile::SystemManufacturers;

you now have a problem because you have imported the name SmbiosInformation twice:

using namespace Windows::System::Profile::SystemManufacturers;

using namespace ABI::Windows::System::Profile::SystemManufacturers;

After these two declarations, the name SystemInformation is now ambiguous. It could

refer to Windows::System::Profile::SystemManufacturers::SystemInformation ,

via the first using declaration, or it oculd refer to ABI::Windows::System::Profile::

SystemManufacturers:: SystemInformation , via the second using declaration.

I’ve worked around this by using namespace aliases:

https://devblogs.microsoft.com/oldnewthing/20180516-00/?p=98765
https://stackoverflow.com/questions/1452721/why-is-using-namespace-std-considered-bad-practice

2/4

namespace wspsm = Windows::System::Profile::SystemManufacturers;

namespace awspsm = ABI::Windows::System::Profile::SystemManufacturers;

This lets me use wspsm::SmbiosInformation and awspsm::SmbiosInformation to refer

to the C++/CX or ABI versions, respectively.

However, this gets clunky once you have multiple namespaces you want to access:

namespace wspsm = Windows::System::Profile::SystemManufacturers;

namespace awspsm = ABI::Windows::System::Profile::SystemManufacturers;

namespace wwspsm = winrt::Windows::System::Profile::SystemManufacturers;

namespace wuvm = Windows::UI::ViewManagement;

namespace awuvm = ABI::Windows::UI::ViewManagement;

namespace wwuvm = winrt::Windows::UI::ViewManagement;

namespace wsc = Windows::Security::Cryptography;

namespace awsc = ABI::Windows::Security::Cryptography;

namespace wwsc = winrt::Windows::Security::Cryptography;

because you have to juggle all these aliases. </`P>

But there’s a more attractive solution: Move names around by importing them into another

namespace. (The name for this technique is “namespace composition”, covered in sections

14.4.3 and 14.4.4 of The C++ Programming Language.)

namespace ABI

{

 using Windows::System::Profile::SystemManufacturers;

 using Windows::UI::ViewManagement;

 using Windows::Security::Cryptography;

}

namespace cx

{

 using Windows::System::Profile::SystemManufacturers;

 using Windows::UI::ViewManagement;

 using Windows::Security::Cryptography;

}

namespace winrt

{

 using Windows::System::Profile::SystemManufacturers;

 using Windows::UI::ViewManagement;

 using Windows::Security::Cryptography;

}

The first block of using declarations imports the contents of the ABI::Windows::

System::Profile::SystemManufacturers , ABI::Windows::UI::View‐

Management , and ABI::Windows::Security::Cryptography namespaces into the

https://www.safaribooksonline.com/library/view/the-c-programming/9780133522884/#toc
https://www.amazon.com/gp/product/0321563840/?ie=UTF8&tag=tholneth-20

3/4

ABI namespace.

Similarly for the other two blocks.

The upshot of this is that you can now do this

Old and busted

To getNew hotness

awspsm::SmbiosInformation ABI::Windows::System::Profile::
SystemManufacturers::SmbiosInformation

 ABI::SmbiosInformation

 wspsm::SmbiosInformation Windows::System::Profile::
SystemManufacturers::SmbiosInformation

 cx::SmbiosInformation

wwspsm::SmbiosInformation winrt::Windows::System::Profile::
SystemManufacturers::SmbiosInformation

 winrt::SmbiosInformation

 awuvm::ApplicationView ABI::Windows::UI::ViewManagement::
ApplicationView

 ABI::ApplicationView

 wuvm::ApplicationView Windows::UI::ViewManagement::
ApplicationView

 cx::ApplicationView

 wwuvm::ApplicationView winrt::Windows::UI::ViewManagement::
ApplicationView

 winrt::ApplicationView

 awsc::Cryptographic‐
Buffer

ABI::Windows::Security::
Cryptography::
CryptographicBuffer

 ABI::Cryptographic‐
Buffer

 wsc::Cryptographic‐
Buffer

Windows::Security::Cryptography::
CryptographicBuffer

 cx::Cryptographic‐
Buffer

 wwsc::Cryptographic‐
Buffer

winrt::Windows::Security::
Cryptography::
CryptographicBuffer

 winrt::Cryptographic‐
Buffer

4/4

In particular, this trick works with Windows Runtime classes because as a general rule,

Windows Runtime type names are unique across all Windows Runtime namespaces, so you

won’t inadvertently introduce a name collision by using a bunch of Windows Runtime

namespaces together.

The general rule makes Windows Runtime types easier to search for (both on the Web and in

your code) because you will have fewer false positives.

Bonus chatter: The exception to the general rule is DirectX. Windows Runtime naming

conventions permit the same name to be used in different versions of DirectX. This isn’t a

problem because in practice, each application picks one version of DirectX and sticks with it;

applications don’t try to mix-and-match different versions of DirectX.

Bonus bonus chatter: The above rule is on the books, but has yet to be exercised. As of

this writing, the only version of DirectX in the Windows Runtime is DirectX11.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

