
1/5

May 4, 2018

Avoiding deadlocks when cancelling a thread pool
callback, part 2: Referring back to the containing object

devblogs.microsoft.com/oldnewthing/20180504-00

Raymond Chen

Last time, we looked at the case where the context for the callback is some data that isn’t part

of the containing object. However, most of the time, the context for the callback is the object

that created the callback.

You might naïvely decide to follow the preceding pattern, using the container object as the

reference data. However, this doesn’t work because that would create a circular reference.

Once you put the strong reference to the containing object in the reference data, you have a

circular reference, and the object will never be destroyed.¹ Instead, you have to use a weak

reference and try to promote it to a strong reference in the callback.

class ObjectWithTimer :

 public RuntimeClass<...> // WRL-specific code

{

public:

ObjectWithTimer();

void StartTimer();

void StopTimer();

private:

static void CALLBACK TimerCallback(

 PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer);

WRL::WeakRef weakThis; // WRL-specific code

std::unique_ptr<TP_TIMER, TpTimerDeleter> timer;

};

ObjectWithTimer::ObjectWithTimer()

{

// Error checking elided for expository purposes.

WRL::AsWeak(this, &weakThis); // WRL-specific code

}

https://devblogs.microsoft.com/oldnewthing/20180504-00/?p=98675

2/5

For convenience, we capture the weak reference at construction and just hang onto it for the

lifetime of the object. This saves us the trouble of having to create the weak reference each

time we start the timer. It also brings us a step closer to making StartTimer have no error

path. (The last step would be to front-load the CreateThreadpoolTimer and leave the

PTP_TIMER valid for the lifetime of the ObjectWithTimer . I leave this as an exercise.)

void ObjectWithTimer::StartTimer()

{

 // Error checking elided for expository purposes.

 timer = CreateThreadpoolTimer(

 TimerCallback,

 weakThis.Get(), // WRL-specific code

 nullptr);

 // Start the timer

 SetThreadpoolTimer(timer, ...);

}

void ObjectWithTimer::StopTimer()

{

 timer.reset();

}

These methods are basically the same as before, except that we don’t clean up the weakThis

when stopping the timer, because we want to leave it ready for the next StartTimer .

void ObjectWithTimer::TimerCallback(

 PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer)

{

// Try to promote the weak reference to a strong reference.

WRL::ComPtr<ObjectWithTimer> strongThis;

WRL::WeakRef(reinterpret_cast<IWeakReference*>(context))

 .As(&strongThis); // WRL-specific code

context = nullptr;

// If the weak reference failed to resolve, then our container is

// destructing.

if (!self) return;

DisassociateCurrentThreadFromCallback(instance);

... do stuff with strongThis ...

}

In the version from last time, we promoted the raw COM pointer to a strong reference, with

the knowledge that the raw COM pointer was valid. However, it’s possible that the promotion

of the WRL::WeakRef to a strong reference may fail. How? We’ll discuss that later.

3/5

Here’s a translation of the pattern into std::weak_ref :

class ObjectWithTimer :

 // weak_ptr-specific code

 public std::enable_shared_from_this<ObjectWithTimer>

{

public:

ObjectWithTimer();

void StartTimer();

void StopTimer();

private:

static void CALLBACK TimerCallback(

 PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer);

std::weak_ref<ObjectWithTimer> weakThis; // weak_ptr-specific code

std::unique_ptr<TP_TIMER, TpTimerDeleter> timer;

};

ObjectWithTimer::ObjectWithTimer()

: weakThis(weak_from_this()) // weak_ptr-specific code
{

}

In the case of weak_ptr , we can initialize weakThis via a member initializer.

4/5

void ObjectWithTimer::StartTimer()

{

 // Error checking elided for expository purposes.

 timer = CreateThreadpoolTimer(

 TimerCallback,

 std::addressof(weakThis), // weak_ptr-specific code
 nullptr);

 SetThreadpoolTimer(timer, ...);

}

void ObjectWithTimer::StopTimer()

{

 timer.reset();

}

void ObjectWithTimer::TimerCallback(

 PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer)

{

// Try to promote the weak reference to a strong reference.

// weak_ptr-specific code

auto strongThis =

 reinterpret_cast<

 std::weak_ref<ObjectWithTimer>*>(context))

 ->lock();

context = nullptr;

// If the weak reference failed to resolve, then our container is

// destructing.

if (!strongThis) return;

DisassociateCurrentThreadFromCallback(instance);

... do stuff with strongThis ...

}

The subtlety in both of the cases is that the promotion of the weak reference to a strong

reference may fail. You might think, “How is that possible? When we shut down the timer, we

always wait until the callback has reached the DisassociateCurrentThreadFrom‐

Callback , and since we’re waiting, that means that the ObjectWithTimer is still valid.

Therefore, the conversion of the weak reference to a strong reference should always succeed.”

But it doesn’t if the call to WaitForThreadpoolXxxCallbacks is running as part of object

destruction. There is a race window between the start of destruction (when the last strong

reference goes away) and the time the callback starts running. To close this window, weak

references can no longer be promoted to strong references once an object starts destructing,

(If they could, then it would mean that an object would finish running its destructors and

5/5

find that there’s still a strong reference to it. This is clearly a bad state of affairs, and since

you can’t “undestruct” an object, the system must prevent code from being able to “resurrect”

a destructing object via a weak-to-strong conversion.)

Note that if you follow this pattern, then the ObjectWithTimer must be a heap-allocated

object so that you can create a weak pointer to it and allow the callback to extend the object’s

lifetime after its owner has released its last reference.

Epilogue: A reminder that this additional complexity is needed only to address the scenario

where a callback deadlocks with its main thread. If your callback does not require its main

thread to be in any particular state (doesn’t use any locks or other exclusive resources that

the main thread may be holding while waiting for the callback to complete, doesn’t

communicate with the main thread), then you can use the simpler life-time management

technique described at the start of this mini-series.

Bonus reading: Threadpool articles by Hari Pulapaka.

¹ Then again, maybe that’s what you want, in case this is a feature, not a bug. For example,

you might want the timer to continue running until some condition is met. The object-with-

timer is a fire-and-forget timer that turns itself off when it decides that its job is done.

Raymond Chen

Follow

https://blogs.msdn.microsoft.com/harip/tag/threadpool/
https://blogs.msdn.microsoft.com/harip/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

