
1/8

May 3, 2018

Avoiding deadlocks when cancelling a thread pool
callback, part 1: External callback data

devblogs.microsoft.com/oldnewthing/20180503-00

Raymond Chen

We saw last time how to use the thread pool cleanup functions to manage the lifetime of the

context data. But if the callback function tries to call into the thread that is calling WaitFor‐

ThreadpoolTimerCallbacks , then you have a deadlock. The callback cannot proceed until

WaitForThreadpoolTimerCallbacks returns, but WaitForThreadpoolTimerCallbacks

won’t return until the callback completes.

You can find yourself in this situation without realizing it. The callback function might send a

message to a window that is owned by the waiting thread. Or it could invokes a method on an

apartment-threaded object that belongs to the waiting thread. Or it could attempt to enter a

critical section that is held by the waiting thread.¹ In many cases, the waiting thread is

cleaning up an object in its destructor, so you don’t even control the locks that may be held at

that point.

This is where DisassociateCurrentThreadFromCallback enters the picture. The

DisassociateCurrentThreadFromCallback function tells the thread pool, “For the

purpose of waiting until all callbacks are complete, consider this callback to be complete even

though it’s still running.” You can think of this as the ReplyMessage of the thread pool.

This means that functions like WaitForThreadpoolXxxCallbacks will return, but other

functions like XxxWhenCallbackReturns won’t be fooled. They will wait for the callback to

return for real before setting the event or leaving the critical section or whatever.

Let’s figure out how to take advantage of this.

We make the context data for the callback function a thread-safe reference-counted object.

Typical examples are a COM pointer to an agile object, and a reference to a

std::shared_ptr .² The first thing the callback function does is to increment the reference

count on the object and save it in an RAII object. For a COM pointer, it would be creating a

COM smart pointer around it (say, converting it to a WRL::ComPtr). For a

std::shared_ptr it would be copying the std::shared_ptr to a local variable.

https://devblogs.microsoft.com/oldnewthing/20180503-00/?p=98665
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682581(v=vs.85).aspx

2/8

Once the context data has been safely referenced, you call DisassociateCurrentThread‐

FromCallback to release the waiting thread, if any.

At this point, you can do your work with the captured strong reference (the WRL::ComPtr or

the local copy of the std::shared_ptr) and stop using the inbound context parameter,

because it is no longer valid; the waiting thread may have destroyed it.

When your callback function completes, the RAII type will release the reference to the

context data, and if that was the last reference, it will destroy the context data.

We start with this helper class.

struct TpTimerDeleter

{

void operator()(PTP_TIMER timer)

{
 SetThreadpoolTimer(timer, nullptr, 0, 0);

 WaitForThreadpoolTimerCallbacks(timer, true);

 CloseThreadpoolTimer(timer);

}
};

This deleter class performs the standard synchronous shutdown of a thread pool timer, as

noted in the documentation.

Here’s how we use it to build a thread pool callback that doesn’t deadlock at cancellation.

We’ll start with one based on WRL::ComPtr :

class ObjectWithTimer

{

public:

StartTimer();

StopTimer();

private:

static void CALLBACK TimerCallback(

 PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer);

WRL::ComPtr<AgileContextData> contextData; // ComPtr-specific code

std::unique_ptr<TP_TIMER, TpTimerDeleter> timer;

};

Having a std::unique_ptr automatically makes the class non-copyable. We’ll see soon

why it’s okay to let the object be movable.

Exercise: Why did I declare the timer member after the contextData member?

(Normally, I don’t answer the exercises in the main body of the article, but this is an

important detail, so I’ll answer it at the end.)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682040(v=vs.85).aspx

3/8

void ObjectWithTimer::StartTimer()

{

// Error checking elided for expository purposes.

timer = CreateThreadpoolTimer(

 TimerCallback,

 contextData.Get(), // ComPtr-specific code

 nullptr);

SetThreadpoolTimer(timer, ...);

}

The StartTimer method assumes that the contextData method has been initialized

(presumably by methods not shown) and that the timer has not already been started. It

creates the timer with the raw COM pointer as the reference data. This is a non-refcounted

pointer, so we have to make sure it remains valid for as long as the callback is potentially-

callable. Once we create the timer, we start it by calling SetThreadpoolTimer and passing

the timer parameters (not shown here).

The context parameter passed to the callback is the thing we have to worry about if the

ObjectWithTimer gets moved. In this case, it’s okay to move the ObjectWithTimer

because the context parameter doesn’t point to the ObjectWithTimer ; it is a raw COM

pointer to an object that won’t move. Therefore, the ObjectWithTimer is movable.

void ObjectWithTimer::TimerCallback(PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer)

{

// ComPtr-specific code

WRL::ComPtr<AgileContextData> contextData{

 reinterpret_cast<AgileContextData*>(context) };

context = nullptr;

DisassociateCurrentThreadFromCallback(instance);

... do stuff with contextData ...

}

The callback function starts by taking our weak pointer and converting it to a strong pointer.

We designed our code so that the raw COM pointer is valid for as long as the callback is

potentially-callable, so we know that it is valid here. We put it inside a WRL::ComPtr to

make it a strong reference.

And then here’s the interesting part: We call DisassociateCurrentThreadFromCallback

to tell the thread pool to release anybody who is waiting for the callback to complete. The

callback is still running, but anybody who is waiting for it to complete is free to proceed

anyway. We can do this because we have captured the information from the context

parameter, and the main object can free it. (To ensure we don’t access the context

parameter by mistake, we also set context to nullptr .)

4/8

We then perform our callback operation with the strong reference in contextData . This

can call back into the main thread because the main thread is no longer stuck in WaitFor‐

ThreadpoolTimerCallbacks , It will eventually return to its event dispatch loop, or release

its locks, or whatever it is that needs to happen for the thread pool thread to be able to

communicate with the main thread.

The other half of the dance comes when we want to stop the timer.

void ObjectWithTimer::StopTimer()

{

timer.reset();

contextData.Reset(); // ComPtr-specific code

}

To stop the timer, we let the TpTimerDeleter do the heavy lifting of checking if we have a

timer and if so, shutting it down cleanly.

Once that’s done, we can safely release our reference to the context data. If the callback is

running, it will have its own reference.

For simplicity, this code doesn’t try to save the thread pool timer object for future use. One of

the features of the thread pool functions is that object creation preallocates all resources.

Once you’ve created the thread pool timer successfully, all other operations will always

succeed (assuming they are used correctly, of course). Therefore, what we could’ve done is

allocate the PTP_TIMER at construction (throwing if not possible), and the have the Start‐

Timer and StopTimer methods merely reconfigure the timer and (in the case of Stop‐

Timer) wait for the callbacks to drain.

Note that in order to avoid the deadlock, we have to accept that the callback may run after

the timer has been stopped. When you have a deadlock, something has to give, and we

choose to break the deadlock by letting the callback complete asynchronously. If you need to

know when the callback is definitely finished, you could add an event that gets signaled when

the COM object is destructed, so that the caller knows when everything is finally finished.

Adapting the above code to std::shared_ptr is not too difficult. The tricky part is that we

cannot pass a raw pointer to the context data as our reference data, because raw C++ objects

are not reference-counted. Instead, we pass a pointer to the std::shared_ptr , which is the

thing with the reference count.

5/8

class ObjectWithTimer

{

public:

// Make object non-movable

ObjectWithTimer(ObjectWithTimer&&) = delete;

ObjectWithTimer operator=(ObjectWithTimer&&) = delete;

StartTimer();

StopTimer();

private:

static void CALLBACK TimerCallback(

 PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer);

std::shared_ptr<AgileContextData> contextData; // shared_ptr-specific code

std::unique_ptr<TP_TIMER, TpTimerDeleter> timer;

};

void ObjectWithTimer::StartTimer()

{

 // Error checking elided for expository purposes.

 timer = CreateThreadpoolTimer(

 TimerCallback,

 std::addressof(contextData), // shared_ptr-specific code

 nullptr);

 // Start the timer

 SetThreadpoolTimer(timer, ...);

}

void ObjectWithTimer::TimerCallback(PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer)

{

// Capture the context with a strong reference

// shared_ptr-specific code

std::shared_ptr<AgileContextData> contextData{

 *reinterpret_cast<

 std::shared_ptr<AgileContextData>*>(context) };

context = nullptr;

DisassociateCurrentThreadFromCallback(instance);

... do stuff with contextData ...

}

void ObjectWithTimer::StopTimer()

{

 timer.reset();

 contextData.reset(); // shared_ptr-specific code

}

6/8

The principle is the same here as before, but the implementation is made more complicated

by the fact that the std::shared_ptr is not necessarily (and in fact usually isn’t) the size of

a pointer, so it doesn’t fit in the context pointer. We have to pass a pointer to the

std::shared_ptr .

Exercise: We could have written &contextData instead of

std::addressof(contextData) . Why did I use std::addressof(contextData) ?

The fact that a std::shared_ptr doesn’t fit in a pointer means that the

std::shared_ptr cannot move, because it is still being referenced by the context pointer

passed to the thread pool callback. We can make the ObjectWithTimer object movable by

putting the std::shared_ptr inside a std::unique_ptr , and passing the raw pointer to

the std::shared_ptr . The std::unique_ptr will transfer the pointer to the moved-to

object, and the std::shared_ptr itself doesn’t move.

7/8

class ObjectWithTimer

{

public:

// Make object movable again

// ObjectWithTimer(ObjectWithTimer&&) = delete;

// ObjectWithTimer operator=(ObjectWithTimer&&) = delete;

StartTimer();

StopTimer();

private:

static void CALLBACK TimerCallback(

 PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer);

std::unique_ptr<

 shared_ptr<AgileContextData>> contextData; // unique_ptr-specific code

std::unique_ptr<TP_TIMER, TpTimerDeleter> timer;

};

void ObjectWithTimer::StartTimer()

{

 // Error checking elided for expository purposes.

 timer = CreateThreadpoolTimer(

 TimerCallback,

 contextData.get(), // unique_ptr-specific code

 nullptr);

 // Start the timer

 SetThreadpoolTimer(timer, ...);

}

void ObjectWithTimer::TimerCallback(PTP_CALLBACK_INSTANCE instance,

 void* context, PTP_TIMER timer)

{

// Capture the context with a strong reference

// no change here

std::shared_ptr<AgileContextData> contextData{

 *reinterpret_cast<

 std::shared_ptr<AgileContextData>*>(context) };

context = nullptr;

DisassociateCurrentThreadFromCallback(instance);

... do stuff with contextData ...

}

void ObjectWithTimer::StopTimer()

{

 timer.reset();

8/8

 contextData.reset(); // no change here

}

The idea in all the cases is that we keep a reference-counted object in the contextData and

provide the callback a way to convert its context parameter to a strong reference. Since we

are careful always to keep the context parameter valid as long as the callback is potentially-

callable, this conversion is straightforward: Just create your own strong reference from the

raw pointer.

Often, the context for the callback is the containing object itself, rather than some external

data. We’ll explore that scenario next time, because this article is too long as it is.

¹ The critical section case is easy to imagine: You might have a critical section that protects

access to object state. The waiting thread owns the critical section because it’s trying to clean

up the object’s thread pool timer. The callback is trying to acquire the critical section because

it wants to access the object’s state as part of the callback operation.

² Be careful with the std::shared_ptr. Copying a std::shared_ptr is thread-safe, but

mutating it is not, so you should initialize your std::shared_ptr with the context

structure and not modify the std::shared_ptr until you are sure that no other threads are

accessing it.

Raymond Chen

Follow

https://www.youtube.com/watch?v=lkgszkPnV8g#t=20m10s
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

