
1/2

May 2, 2018

How to avoid accessing freed memory when canceling a
thread pool callback

devblogs.microsoft.com/oldnewthing/20180502-00

Raymond Chen

The Windows thread pool is convenient, but one tricky part is how to remove items from the

thread pool.

This discussion applies to all the thread pool objects, but I’ll use thread pool timers for

concreteness. You start by calling CreateThreadpoolTimer to establish the callback

function and its context. Next, you call SetThreadpoolTimer to configure the timer: When

the timer becomes due and its optional periodicity.

At this point, the timer is live. It will queue a callback (or callbacks, if periodic) to the thread

pool according to the schedule you specified.

At some future point, you decide that you are finished with the timer. The timer may have

elapsed by this point, or maybe you’re cleaning up the timer before it elapsed.

Now you have a few options.

The simplest way is just to call CloseThreadpoolTimer . If the callback is not running, then

this frees the timer immediately. Otherwise, it waits for the callback to complete before

freeing the timer.

This “either/or” behavior makes CloseThreadpoolTimer basically useless for any callback

with nontrivial context data, because you don’t know when it’s safe to free the context data. If

you free it as soon as CloseThreadpoolTimer returns, then you might free it out from

under an active callback.

That would be bad.

If you make the callback itself responsible for freeing the context data, you have the new

problem of not knowing whether the callback is running, so the thread trying to close the

timer doesn’t know whether it should free the data or not. You can’t have the callback set a

flag saying, “Hey, I’ve started!” because there’s still a race condition where the thread trying

to close the timer checks the flag just before the callback manages to set it. You might try to

https://devblogs.microsoft.com/oldnewthing/20180502-00/?p=98655

2/2

fix this by making the context pointer be a pointer to a control block that in turn contains the

data pointer, and having the callback and the main thread perform an atomic exchange on

the data pointer, but you merely replaced the problem with an identical one: How do you

know when it’s safe to free the control block?

Fortunately, the documentation suggests an alternative:

Call SetThreadpoolTimer to reconfigure the timer so it never comes due. This

prevents new callbacks from occurring.

Call WaitForThreadpoolTimerCallbacks to wait for any outstanding callbacks to

complete.

Call CloseThreadpoolTimer .

Free the context data.

When WaitForThreadpoolTimerCallbacks returns, you know that there are no active

callbacks, and your prior call to SetThreadpoolTimer makes sure that no new callbacks are

scheduled. This means that you can call CloseThreadpoolTimer , and it will always be in

the “callback is not running” case, so you can free the context data as soon as Close‐

ThreadpoolTimer returns.

Great, we solved the context data lifetime problem, but we introduced a new problem:

Deadlock.

Oh, look at the time. We’ll continue this discussion next time.

Raymond Chen

Follow

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682040(v=vs.85).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

