
1/3

April 23, 2018

The early history of redundant function pointer casts:
MakeProcInstance

devblogs.microsoft.com/oldnewthing/20180423-00

Raymond Chen

If you look through old code, you see a lot of redundant function pointer casts. (If you’re

writing new code, you should get rid of as many function pointer casts as possible, because a

function pointer cast is a bug waiting to happen.) Why does old code have so many

redundant function pointer casts?

Because back in the old days, they weren’t redundant.

In the days of 16-bit Windows, function prologues were required to take very specific forms

in order to make stack walking work, and stack walking was necessary in order to simulate an

MMU on a CPU that didn’t have one.

Another rule for prologues has to do with state management. The full prologue for a far

function looks like this:

 mov ax, ds

 nop

 inc bp

 push bp

 mov bp, sp

 push ds

 mov ds, ax

Before we can dig into those instructions, we need to know a bit about how code segments

worked in real-mode 16-bit Windows. In real-mode 16-bit Windows, there was a single

address space for all applications because the CPU had no concept of per-process address

spaces. The kernel simulated separate address spaces by managing instances. The instance

(represented by an instance handle) specified the location of the data segment the code

should operate on. If you have two copies of a program running, the code is shared, but each

program has its own data. The instance handle tells you where that data is.

And the instance handle is kept in the ds register.

https://devblogs.microsoft.com/oldnewthing/20180423-00/?p=98575
http://blogs.msdn.com/b/oldnewthing/archive/2011/05/06/10161590.aspx#10161846
http://blogs.msdn.com/b/oldnewthing/archive/2011/05/06/10161590.aspx#10161846
http://blogs.msdn.com/b/oldnewthing/archive/2012/06/29/10325295.aspx

2/3

Therefore, it is essential that every function have its ds register set to the instance handle

that describes where the code should find its data. You can think of it as a “global this

pointer for the process.”

Okay, so let’s look at the function prologue again. First, it copies ds to ax via a two-byte

mov ax, ds instruction. Then there is a nop . This pads the prologue size to three bytes.

The next four instructions build the stack frame: The inc bp marks the stack frame as a far

frame. The push bp and mov bp, sp build the bp chain. And the push ds saves the

original ds register, which also provides breathing room for return address patching.

And then we move ax back into ds . The instance handle just took a little tour of the ax

register and then returned back home. What was the point of that?

Recall that in 16-bit Windows, every far function called from another segment was listed in

the module’s Entry Table.

When a far function is placed in the exported function table, the loader patches the first three

bytes of the function to three nop instructions. Non-exported functions remain unchanged.

This means that non-exported functions do the redundant ds rigamarole. It’s a little extra

work, but it’s ultimately harmless.

The effect of patching out the initial mov ax, ds is that the function ends up doing this:

Build a far stack frame, which includes saving the original ds .

Set ds to whatever was passed in the ax register.

The second step means that the code, when it executes, operates on the data associated with

the handle passed in the ax register.

Okay, great, but this means that you can’t call an exported function directly, because it will

set the ds register to whatever value is passed in the ax register. Since the ax register is

not part of the calling convention, its value is garbage.

But that’s okay. We made things worse so we can make them better.

The MakeProcInstance function creates a stub function that loads the ax register with the

instance handle you provide, and then jumps to the function you provide. Really. That’s all it

did. (When you’re done, you call FreeProcInstance to free the memory back to the

system.)

This stub function was known as a procedure instance thunk, or a proc instance for short.

Hence the name MakeProcInstance .

http://blogs.msdn.com/b/oldnewthing/archive/2011/03/16/10141735.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/06/29/10325295.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/06/22/10322767.aspx
https://blogs.msdn.microsoft.com/oldnewthing/20080207-00/?p=23533

3/3

Okay, finally the punch line. The MakeProcInstance function didn’t care what kind of

function pointer you passed it. Whatever you passed in, it returned the same kind of pointer

back out, because all the stub did was twiddle the ax register and then jump to the real

function. The parameters on the stack didn’t change, the cleanup convention didn’t change,

nothing else changed.

The MakeProcInstance function was declared as returning a FARPROC , which is a typedef

for a far function that takes no parameters and returns nothing. The parameters and return

value are irrelevant; it just had to be something.

But what this means is that when you take your function, like a window enumeration

callback, and create a procedure instance for it, the thing you get back has been type-erased

to a generic function pointer. To make it useful again, you need to cast it back to what it was

originally.

For example, if what you passed was a WNDENUMPROC , then you need to cast the procedure

instance back to a WNDENUMPROC . If you passed a TIMERPROC , then you need to cast the

procedure instance back to a TIMERPROC . You could anachronistically express this as

template<typename R, typename ...Args>

auto MakeProcInstanceT(R (FAR *func)(Args...), HINSTANCE inst)

{

 return (decltype(func))MakeProcInstance((FARPROC)func, inst);

}

Of course, you didn’t have this fancy template deduction in 1983-era C, so you had to cast the

return value manually.

And that brings us to today. Even though MakeProcInstance has been obsolete for

decades, some people imprinted on the “gotta cast your function pointers to get them to

compile” pattern, either because they wrote code when the cast was required and fell into the

habit, or or (more likely) they learned from code that was written by someone who inherited

this habit from somebody else. And yes, this inherited folk wisdom can even be found in

MSDN.

The redundant function pointer cast is now a type of folklore, passed down from developer to

developer, even though it’s no longer needed and in fact will mask problems caused by

mismatched prototypes.

Raymond Chen

Follow

https://msdn.microsoft.com/ms644996
https://blogs.msdn.microsoft.com/oldnewthing/20110506-00/?p=10723
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

