
1/6

April 20, 2018

The MIPS R4000, part 15: Code walkthrough
devblogs.microsoft.com/oldnewthing/20180420-00

Raymond Chen

Today we’re going to take a relatively small function and watch what the compiler did with it.

The function is this guy from the C runtime library, although I’ve simplified it a bit to avoid

some distractions.

extern FILE _iob[];

int fclose(FILE *stream)

{

 int result = EOF;

 if (stream->_flag & _IOSTRG) {

 stream->_flag = 0;

 } else {

 int index = stream - _iob;

 _lock_str(index);

 result = _fclose_lk(stream);

 _unlock_str(index);

 }

 return result;

}

Here’s the corresponding disassembly:

; int fclose(FILE *stream)

; {

 addiu sp,sp,-0x28 ; reserve stack space

 sw ra,0x1C(sp) ; save return address

 sw s0,0x18(sp) ; save s0

On entry, the parameters to a function are passed in a0 through a3. This function has only

one parameter, so it goes in a0.

We reserve some stack space. The first 16 bytes of that stack space are going to be used as

home space for the functions we call, so our usable bytes start at offset 0x10 . We save the s0

register (because we’re going to use it as a local variable) and the return address (because it

will be modified when we call to other functions).

https://devblogs.microsoft.com/oldnewthing/20180420-00/?p=98565

2/6

; if (stream->_flag ...

 lw t6,0xc(a0) ; t6 = stream->_flag

 move a1,a0 ; save stream in a1

We are going to test a bit in the stream->_flag member, so we need to load that up.

Meanwhile, we save the stream parameter in the a1 register.

; int result = EOF;

 li v1,-1 ; result = -1

Interleaved with the evaluation of the condition we insert the initialization of the result

local variable.

; if (stream->_flag & _IOSTRG) {

 andi t7,t6,0x40 ; is the _IOSTRG bit set?

 bnezl t7,done ; yup, then bail

; stream->_flag = 0;

 sw zero,12(a0) ; but set stream->_flag = 0 before we go

We mask off all but the _IOSTRG bit and see if it’s nonzero. If so, then we branch. This

branch uses the l “likely” suffix, so the instruction in the branch delay slot executes only if

the branch is taken. Since the true branch of the if is only one instruction long, the

entire contents fit inside the delay slot. How convenient. We can put the true branch in the

branch delay slot and jump right to the function exit code. If the branch is not taken, then the

instruction in the branch delay slot is suppressed. (This suppression behavior is the case only

for l -type branches.)

; } else {

; int index = stream - _iob;

 lui t8,0x77cd ; load address of _iob into t8

 addiu t8,t8,0x7b0 ; t8 = 0x77cd07b0

 subu s0,a1,t8 ; calculate raw pointer offset

 sra s0,s0,5 ; divide by 32 to get the index (saved in s0)

To calculate the pointer difference, we need to subtract the raw pointers, and in order to do

that, we need to load the 32-bit address of the _iob array. That takes two instructions. And

then we subtract the raw pointers to get the byte difference. And then we divide by

sizeof(FILE) to get the index. We’re lucky that the size of a FILE is a power of 2, so a

shift instruction can be used instead of a full division.

; _lock_str(index);

 move a0,s0 ; Load argument for _lock_str

 jal _lock_str

 sw a1,0x28(sp) ; save stream pointer on the stack for later

3/6

Now that we’ve calculated the index, set it up as the argument for the _lock_str function

and call it. But just before we go, we save a1 (which is the stream parameter) on the stack

so we don’t lose it. The saving of a1 goes into the branch delay slot, so it executes before the

branch is taken, even though it comes after the branch in the instruction stream.

(I don’t know why the compiler bothered with a1. It could have saved a0 on the stack sooner

and put the move a0, s0 in the branch delay slot.)

; result = _fclose_lk(stream);

 jal _fclose_lk

 lw a0,0x28(sp) ; load argument for _fclose_lk

The next thing to do is to call _fclose_lk , and in this case, we load its argument in the

branch delay slot. Seeing work happen in the branch delay slot takes getting used to. It

always takes a period of adjustment whenever I switch to MIPS after working with some

other processor without branch delay slots.

; _unlock_str(index);

 move a0,s0 ; Load argument for _unlock_str

 jal _unlock_str

 sw v0,0x24(sp) ; result = return value from _fclose_lk

After the _fclose_lk , we call _unlock_str , and this time we use the branch delay slot to

save the return value from _fclose_lk onto the stack before we lose it. (Though the

compiler could have done a little better and saved it in s0, since index is a dead variable at

this point.)

; }

 lw v1,0x24(sp) ; recover result so we can return it

After _unlock_str returns, we put result into v1 because that’s where our cleanup code

expects it.

Note that in the instruction stream, you see a store immediately followed by a load from the

same location. This makes no sense at first, until you realize that there’s a function call in

between them, because the store is in the branch delay slot. Even though the store and load

immediately follow each other in the instruction stream, there’s an entire function call that

happens in between! The store happens before the function call, ad the load happens after.

; return result;

; }

done:

 move v0,v1 ; set return value

 lw s0,0x18(sp) ; restore s0

 lw ra,0x1C(sp) ; recover return address

 jr ra ; return

 addiu sp,sp,0x28 ; clean up stack

4/6

We set the return value to the result , and then we enter the epilogue. In the epilogue, we

restore the s0 register we had been using to hold index , and then we load up the return

address and jump back to it. We destroy the stack frame in the branch delay slot.

Overall, it’s pretty straightforward code. The only truly weird thing is the branch delay slot.

But that’s a huge truly weird thing.

This concludes our tour of the MIPS R4000 processor. I never had to do any significant work

with it, so I probably won’t be able to answer interesting questions. The focus was on learning

enough to be able to read valid compiler output, with a few extra notes on the architecture to

call out what makes it different.¹

Bonus chatter: Here’s my hand-optimized version of the function.

; int fclose(FILE *stream)

; {

 addiu sp,sp,-0x10 ; reserve stack space

 sw ra,0x14(sp) ; save return address

 sw s0,0x10(sp) ; save s0

 move s0,a0 ; register variable s0 = stream

My first trick is to reuse the home space. The compiler-generated version didn’t use the home

space for anything other than saving the stream parameter. Look, people, it’s free memory!

We need three words of stack, one for the return address, one to save the preserved register

s0, and one to save the index. We get four words of home space, so we can just use that. The

actual stack frame needed by our function is just the home space for the outbound call.

(I wonder whether it’s legal to overlap your inbound home space with your outbound home

space. If our function had needed only two words of stack, would it have been okay for us to

write addiu sp, sp, -8 ?)

; if (stream->_flag ...

 lw t6,0xc(a0) ; t6 = stream->_flag

; int result = EOF;

 li v0,-1 ; result = -1 (avoid load stall)

I’m precalculating the result in anticipation of the early-out. This instruction is basically

free because it comes in the load delay slot. If we had tried to use the value in t6 immediately,

the processor would have stalled for a cycle, so we may as well use that cycle productively,

even if only speculatively.

; if (stream->_flag & _IOSTRG) {

 andi t7,t6,0x40 ; is the _IOSTRG bit set?

 bnezl t7,done ; yup, then bail

; stream->_flag = 0;

 sw zero,12(a0) ; but set stream->_flag = 0 before we go

5/6

The test and one-line-body for the _IOSTRG test hasn’t changed, except that we exit with the

return value directly in v0 rather than in v1.

; } else {

; int index = stream - _iob;

 lui t8,0x77cd ; load address of _iob into t8

 addiu t8,t8,0x7b0 ; t8 = 0x77cd07b0

 subu a0,a0,t8 ; calculate raw pointer offset

 sra a0,a0,5 ; divide by 32 to get the index (in a0)

The calculation of the index is the same, except that I put it directly into a0 so it is ready to be

passed to _lock_str .

; _lock_str(index);

 jal _lock_str

 sw a0,0x18(sp) ; save index

I spent some time trying to decide which should be the register variable: stream or

index . Turns out it doesn’t matter from a code size point of view: Both are saved and

restored exactly once.

; result = _fclose_lk(stream);

 jal _fclose_lk

 move a0,s0 ; load argument for _fclose_lk

Calling _fclose_lk is simpler because we can move the argument from a register rather

than from memory. That way, if the first thing that _fclose_lk does is try to use the

stream, it won’t suffer a load delay stall. The first instruction of the called function executes

immediately after the branch delay slot. If you put a load instruction in the branch delay slot,

then the first instruction of the called function is executing in a load delay slot, and it

probably isn’t expecting that.

So that thinking tipped the scales in favor of keeping stream as the register variable. (Of

course, that thinking is also based on the older MIPS implementation, which was not dual-

issue. The MIPS R4000 processes one instruction every half-cycle. This alters the micro-

optimization considerations for both branch delays and load delays.)

; _unlock_str(index);

 lw a0,0x18(sp) ; Load argument for _unlock_str

 jal _unlock_str

 move s0,v0 ; result = return value from _fclose_lk

We could have swapped the lw and move , but I load early and move late in order to avoid

loading memory in a branch delay slot, for reasons explained above.

Since the stream variable is dead, we can reuse the s0 register to hold result .

6/6

; }

 move v0,s0 ; recover result so we can return it

; return result;

; }

done:

 lw s0,0x10(sp) ; restore s0

 lw ra,0x14(sp) ; recover return address

 jr ra ; return

 addiu sp,sp,0x10 ; clean up stack

And then we clean up and go home. Everybody reached done with the return value already

in v0 , so all that's left to do is restore our registers and stack.

¹ I confess that the excursion into branch delay slots took me away from the focus on how to

read valid compiler output. Sorry.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

