
1/3

April 18, 2018

The MIPS R4000, part 13: Function prologues and
epilogues

devblogs.microsoft.com/oldnewthing/20180418-00

Raymond Chen

We saw last time how functions are called. Today we’ll look at the receiving end of a function

call.

As noted earlier, all functions (except for lightweight leaf functions) must declare unwind

codes in the module metadata so that the kernel can figure out what to do if an exception

occcurs.

The stack for a typical function looks like this:

⋮

param 6 (if function accepts more than 4 parameters)

param 5 (if function accepts more than 4 parameters)

param 4 home space

param 3 home space

param 2 home space

param 1 home space ← stack pointer at function entry

local variables
⋮

outbound parameters
beyond 4 (if any)

⋮

param 4 home space

param 3 home space

param 2 home space

https://devblogs.microsoft.com/oldnewthing/20180418-00/?p=98545

2/3

param 1 home space ← stack pointer after prologue complete

On entry to the function, the first four parameters are in registers, but they have reserved

home space on the stack. Even if a function has fewer than four parameters, there is home

space for all four registers. If there are more than four parameters, then those beyond the

fourth are on the stack.

The function prologue needs to move the stack pointer down to make room for the local stack

frame. The local variables include the return address and any saved registers. After the local

variables come the outbound parameters (either directly on the stack for parameters beyond

4, or home space for the four register-based parameters). Again, even if a function accepts

fewer than four parameters, it gets a full four words of home space.¹

The 1992 compiler organized the local variables with the declared function local variables at

higher addresses, followed by saved registers, and the return address closest to the outbound

parameters. By 1995, the compiler started exploring other ways of organizing its local

variables.

A typical function prologue looks like this:

 ADDIU sp, sp, -n1 ; carve out a stack frame

 SW ra, n2(sp) ; save return address

 SW s1, n3(sp) ; save nonvolatile register

 SW s0, n4(sp) ; save nonvolatile register

The prologue must start by updating the stack pointer, and then it can store its registers in

any order. You are allowed to interleave instructions from the function body proper into the

prologue, provided they are purely computational instructions (no branches or memory

access), and provided they do not mutate sp , ra , or any nonvolatile registers.² In practice,

the Microsoft compiler does not take advantage of this.

To return from a function, the function places the return value, if any, in the v0 register and

possibly the v1 register. It then executes the formal function epilogue:

 MOVE v0, return_value

 LW s0, n4(sp) ; restore nonvolatile register

 LW s1, n3(sp) ; restore nonvolatile register

 LW ra, n2(sp) ; restore return address

 JR ra ; return to caller

 ADDIU sp, sp, n1 ; restore stack pointer (in branch delay slot)

Notice that the adjustment of the stack pointer happens as the very last thing, even after the

return instruction! That’s because it sits in the branch delay slot, so it executes even though

the branch is taken.

3/3

¹ If a function uses alloca , then the memory is carved out between the existing local

variables and the outbound parameters.

² This rule exists so that when the exception unwinder needs to reverse-execute a function

prologue, it can just ignore the instructions it doesn’t understand.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

