
1/4

April 17, 2018

The MIPS R4000, part 12: Calling convention
devblogs.microsoft.com/oldnewthing/20180417-00

Raymond Chen

The Windows NT calling convention for the MIPS R4000 is similar to the other major MIPS

calling conventions, but calling conventions for the MIPS are like snowflakes: Despite being

made of the same underlying materials, no two are completely alike.

The short version of the parameter passing is that the first four parameters are passed in

registers a0 through a3, and the remaining parameters go on the stack after a 16-byte gap.

The 16-byte gap represents the home space for the register-based parameters. We’ve seen

this convention before, in the x64 calling convention. Even if a function accepts fewer than

four parameters, you must still provide a full 16 bytes of home space.

Things get weird when you mix in 64-bit values or floating point. The way to think about it is

as if you were creating a C structure whose members are all the parameters, in order, except

that any types smaller than a 32-bit value are promoted to a 32-bit value. If you have a 64-bit

value (either integer or floating point), you may need to insert padding to get the parameter

to be properly aligned.

Once you’ve laid out your parameters in the structure, you load the first sixteen bytes into a0

through a3, and the rest go on the stack. However, if a parameter that would normally be

passed in a0 through a3 turns out to be a non-variadic floating point value, then it is stored

in $f12/$f13 (for the first floating point value) or $f14/$f15 (for the second), and the

corresponding integer register is left unused.

Here are some examples:

void f(int a, char b, short c, int d, int e);

Offset Parameter Passed as

00 int a a0

04 int b a1

08 int c a2

https://devblogs.microsoft.com/oldnewthing/20180417-00/?p=98525
https://blogs.msdn.microsoft.com/oldnewthing/20040114-00/?p=41053


2/4

0C int d a3

10 int e 0x10(sp)

void f(float a, int b, double c, int d);

Offset Parameter Passed as

00 float a f12

04 int b a1

08 double c f14

0C f15

10 int e 0x10(sp)

void f(int a, double b, float c);

Offset Parameter Passed as

00 int a a0

04 padding

08 double b f12

0C f13

10 float c 0x10(sp)

void f(int a, ...);

f(1, 2, 0.0, 3);

Offset Parameter Passed as

00 1 a0

04 2 a1

08 0.0 a2

0C a3

10 3 0x10(sp)



3/4

In this last example, the floating point double-precision value 0.0  is a variadic parameter

(matches the ...  part of a function prototype), so it gets passed in the integer registers

even though it’s a floating point value. That’s because one of the first things that variadic

functions do is spill all their variadic register parameters onto the stack so they form a

contiguous array of bytes. Passing all variadic parameters in integer registers means that this

spilling can be done without knowing the types of the parameters. (Which is a good thing

because the types of the parameters are frequently not known at compile time.)

The last wrinkle is if you’re calling a function with no prototype. In that case, you don’t know

whether a parameter is variadic or not. If the parameter is a floating point value, then you

have to pass it in both an integer register and a floating point register, because you don’t

know where the callee is going to look for it.

f(1, 2, 0.0, 3); // no prototype

Offset Parameter Passed as

00 1 a0

04 2 a1

08 0.0 a2 and f12

0C a3 and f13

10 3 stack

This explains the importance of the rule that if a parameter is passed in a floating point

register, then the corresponding integer register is left unused. Without that rule, calling

functions with no prototype would be a disaster because the register assignment would be

different depending on whether the function takes variadic parameters or not.

With the exception of lightweight leaf functions, every function must include exception

unwind codes in the module metadata so that the kernel can figure out what to do if an

exception occurs.

A lightweight leaf function is one that can do its work using only the 16 bytes of home space,

plus any scratch registers. It cannot move the stack pointer or modify any callee-preserved

registers. Furthermore, the return address must remain in the ra register for the duration of

the function.

You are allowed to promote your lightweight leaf function to a full function by a technique

known as shrink-wrapping, which I described earlier.

https://devblogs.microsoft.com/oldnewthing/


4/4

(Some of the details of the calling convention are documented on MSDN. The documentation

was originally written for Windows CE, but I figure they are still true for Windows NT,

because why not reuse the compiler you already have?)

Raymond Chen

Follow







https://msdn.microsoft.com/en-us/library/ms864304.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

