
1/7

April 11, 2018

The MIPS R4000, part 8: Control transfer
devblogs.microsoft.com/oldnewthing/20180411-00

Raymond Chen

Let’s just get this out of the way.

The MIPS R4000 has branch delay slots.

Ugh.

When you perform a branch instruction, the instruction after the branch instruction is

executed, even if the branch is taken. The branch itself is delayed by one instruction.

This takes a lot of getting used to.

And to make things even more confusing, there are situations where the instruction in the

branch delay slot is ignored, But lets not get into that yet.

Here’s a basic example of a branch delay slot:

 BEQ r1, zero, dest ; branch if r1 is equal to zero

 OR r1, zero, zero ; set r1 = 0; this line executes regardless

 ...

dest:

 ADDI r2, zero, 1 ; set r2 = 1

The OR instruction sits in the branch delay slot, and it will execute regardless of whether the

branch is taken. It still executes after the branch instruction, so don’t think of the entire

branch instruction as executing after its delay slot. Only the control transfer part executes

late. (In the above example, the BEQ tests the previous value of r1, not the value set by the

OR instruction that sits in the delay slot.)

In the above example, the sequence of events is as follows, with time proceeding to the right.

Fetch and decode
BEQ instruction.

→ The condition is true, so fetch
the next instruction from
dest .

https://devblogs.microsoft.com/oldnewthing/20180411-00/?p=98485

2/7

 Fetch and decode OR
instruction.

→ Set r1 to zero.

 Fetch and
decode ADDI
instruction.

→ Set
r2
to
1.

When the branch instruction executes, the fetch and decode of the instruction in the branch

delay slot is already under way. Instead of throwing away that work, the processor says,

“Well, I may as well finish what I’ve started, seeing as I’ve already paid for it,” and it polishes

off its drink before leaving the table to fetch and decode the instruction at the branch

destination. The result is that the control transfer doesn’t happen until one straggler

instruction has already executed.

Basically, this is a trick to avoid a pipeline bubble during branching without needing

complicated speculation circuitry. On a system without branch delay slots, the processor has

a lot of decisions to make the moment it decodes a branch instruction.

A branch predictor decides whether instruction fetching and decoding continues from

the branch-taken or the branch-not-taken code path.

Speculation circuitry executes the operations from the predicted code path, but doesn’t

commit the results. Any side effects (such as register updates, memory updates, and

exceptions) must be suppressed until the processor determines whether the branch is

taken. If speculation was correct, than all side effects are realized. If speculation was

incorrect, than all side effects are discarded.

Branch delay slots remove all this complexity. The processor always fetches and executes the

straight-line code. And the processor has determined whether the branch is taken by the time

it needs to fetch an instruction beyond the the branch delay slot. This means that you don’t

need a branch predictor, return address predictor, or speculation, thereby reducing chip

complexity.

Unfortunately, branch delay slots also expose the internal pipelining. If a future version of

the processor has a different pipeline depth, it still needs to emulate the old pipeline timing.¹

Okay, before we get even more bogged down in the intricacies of branch delay slots, let’s look

at the control transfer instructions. First, the conditional transfers:

 ; all comparisons are signed

 BEQ rs, rt, dest ; branch if rs = rt

 BNE rs, rt, dest ; branch if rs ≠ rt

 BGEZ rs, dest ; branch if rs ≥ 0

 BGTZ rs, dest ; branch if rs > 0

 BLEZ rs, dest ; branch if rs ≤ 0

 BLTZ rs, dest ; branch if rs < 0

3/7

The branch instructions have a reach of ±128KB.

To help prepare for one of the above branch instructions, you can use one of these

instructions:

 ; "set if less than"

 SLT rd, rs, rt ; rd = ((int32_t)rs < (int32_t)rt) ? 1 : 0

 SLTI rd, rs, imm16 ; rd = ((int32_t)rs < (int16_t)imm16) ? 1 : 0

 SLTU rd, rs, rt ; rd = ((uint32_t)rs < (uint32_t)rt) ? 1 : 0

 SLTIU rd, rs, imm16 ; rd = ((uint32_t)rs < (uint32_t)(int16_t)imm16) ? 1 : 0

The SLT family of instructions compare two values and set the destination register to 1 if

the first comparand is less than the second; otherwise it sets the destination register to 0. The

I versions compare against a signed 16-bit immediate value rather than a register, and the

U versions use an unsigned comparison instead of signed. Note that SLTIU sign-extends

the immediate from a 16-bit value to a 32-bit value, but the comparison is performed as an

unsigned value. No arithmetic exceptions are raised by these instructions.

The assembler provides several pseudo-instructions for other types of relative branches,

often using one of the SLT instructions to build the branch condition in the at register. Here

are a few of them:

https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933

4/7

 BEQ zero, zero, dest ; B dest

 ; branch unconditional

 BEQ rs, zero, dest ; BEQZ rs, dest

 ; branch if rs = 0

 BNE rs, zero, dest ; BNEZ rs, dest

 ; branch if rs ≠ 0

 LI at, imm32 ; BEQ rs, imm32, dest

 BEQ rs, at, dest ; branch if rs = imm32

 LI at, imm32 ; BNE rs, imm32, dest

 BNE rs, at, dest ; branch if rs ≠ imm32

 SLT at, rs, rt ; BLT rs, rt, dest

 BNEZ at, dest ; branch if rs < rt

 SLTI at, rs, imm16 ; BLT rs, imm16, dest

 BNEZ at, dest ; branch if rs < imm16

 LI at, imm32 ; BLT rs, imm32, dest

 SLT at, rs, at ;

 BNEZ at, dest ; branch if rs < imm32

 SLT at, rs, rt ; BGE rs, rt, dest

 BEQZ at, dest ; branch if rs ≥ rt

 SLTU at, rs, rt ; BGEU rs, rt, dest

 BEQZ at, dest ; branch if rs ≥ rt (unsigned)

And so on. You get the idea.

The next batch of control transfer instructions are those which perform relative branches and

store the return address in the ra register. The return address is the instruction after the

branch delay slot.

 ; all comparisons are signed

 BGEZAL rs, dest ; branch if rs ≥ 0 and link

 BLTZAL rs, dest ; branch if rs < 0 and link

 ; pseudo-instruction

 BGEZAL zero, dest ; BAL dest

 ; branch unconditional and link

The BAL pseudo-instruction is an unconditional branch and link, implemented by encoding

a conditional branch and link where the condition is always true (namely 0 ≥ 0).

5/7

The next batch is the “likely” branch instructions. These not only include a hint that the

branch should be predicted taken, but they also have the extra weirdness that the instruction

in the branch delay slot is ignored if the branch is not taken!

Note carefully: The instruction in the branch delay slot is ignored if the branch is not taken.

If the branch is taken, then the instruction in the branch delay slot executes normally.²

 ; all comparisons are signed

 BEQL rs, dest ; branch if rs = 0, likely

 BNEL rs, dest ; branch if rs ≠ 0, likely

 BGEZL rs, dest ; branch if rs ≥ 0, likely

 BGTZL rs, dest ; branch if rs > 0, likely

 BLEZL rs, dest ; branch if rs ≤ 0, likely

 BLTZL rs, dest ; branch if rs < 0, likely

 BGEZALL rs, dest ; branch if rs ≥ 0 and link, likely

 BLTZALL rs, dest ; branch if rs < 0 and link, likely

The MIPS people presumably reconsidered these instructions, because later versions of the

architecture mark them as deprecated.

The last group are the “jump” instructions.

 J dest ; jump

 JAL dest ; jump and link

 ; return address stored in ra

 JR rs ; jump register

 JALR rd, rs ; jump and link register

 ; return address stored in rd

The first two instructions encode an absolute jump, sort of. The J and JAL instructions

have room to express the lower 28 bits of the absolute jump target. The upper four bits of the

jump target are copied from the program counter of the branch delay slot. (This is almost

always the same as the program counter of the jump instruction itself; it makes a difference

only if the jump instruction and the branch delay slot are on opposite sides of a 256MB

boundary.)

For example, suppose the program counter is at 0x12345678 . This means that the jump

instruction can jump to any address in the range 0x10000000 through 0x1FFFFFFC .

This partitioning of the jump target space into 256MB regions means that in practice, a DLL

cannot exceed 256MB, and a DLL cannot be relocated so that it straddles a 256MB boundary,

because it would be impossible to fix up the jumps that cross the boundary.

The jump register instructions use a register to specify a jump target. Unlike the absolute

jump instructions, the jump register instructions can jump to any 32-bit address.

https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933

6/7

The JALR instruction is the only control transfer instruction that lets you pick the register to

receive the return address. In practice, you always pick ra, but the possibility is nevertheless

available to pick something else, in case you’re doing something wacky.

Okay, now back to branch delay slots.

One rule about branch delay slots is that you cannot put another branch instruction in a

branch delay slot. Because that would be Inception-level crazy.

Another rule about branch delay slots is that if an exception occurs while executing the

instruction in the branch delay slot, and the kernel decides to resume execution after fixing

the problem, execution will resume at the preceding branch instruction.

This is obvious in retrospect, because if execution resumed at the branch delay slot, well,

there’s no branch instruction active when execution resumes, so execution will fall through,

which is bad if the original exception had occurred when executing the instruction in the

branch delay slot for a taken branch. Resuming from the instruction that raised the exception

would cause the taken branch to become not-taken!

Therefore, the kernel backs up to the branch instruction and resumes execution there.

Branch instructions cannot fault, and they modify at most ra; in particular, the register being

tested by a conditional branch did not change, so the resumed execution will take or not-take

the branch in the same way as the original execution, and the instruction in the branch delay

slot will get another chance to execute.

Well, I sort of lied when I said that “the register being tested by a conditional branch did not

change”: If the register being tested is ra itself, then the branch instruction will indeed

modify the register that controls the conditional branch! (Similarly if you write JALR r,

r .)

So let’s just say that it’s not allowed by convention. A branch instruction cannot be

conditional on ra if it also modifies ra, and JALR r, r is also not allowed by convention.³

These forbidden instructions are merely software conventions. The processor will gladly let

you do these disallowed things, but if you try it, and you take an exception on the instruction

in the branch delay slot, then your program will act all wacky when execution is resumed,

and you got what you deserved.

Oh yeah, you also shouldn’t put a multi-instruction pseudo-instruction in the branch delay

slot, because only the first instruction will execute as part of the branch delay slot. I never

tried it, but I hope the assembler warns you when this happens.

Branch delay slots are a place you are likely to see NOP instructions. If the compiler can’t

find anything to put in the branch delay slot, it will just dump a boring NOP in there.

http://www.imdb.com/title/tt1375666/

7/7

Next time, we’ll look at some of the crazy things you can do with branch delay slots. I don’t

know if any compilers take advantage of them, but they are technically legal.

¹ I’m led to believe that this problem actually occurred. The original MIPS processor was

single-issue with a two-stage pipeline. Later versions deepened the pipeline and added multi-

issue, which means that a single branch delay slot is not sufficient to avoid a pipeline bubble.

So they had to add branch prediction circuitry anyway.

² The story as I heard it is that the MIPS folks noticed that lots of people were putting NOP

instructions in the branch delay slot because they couldn’t find anything useful to go in there.

So the MIPS people added the “likely” version of the branch instructions which allows you to

front-load the first instruction of the jump target in the branch delay slot. If the branch is not

taken, the instruction in the branch delay slot is ignored, which means that you don’t have to

worry about the front-loaded instruction interfering with the fall-through code path. Though

they ended up deprecating the instructions, so who knows what really happened. Maybe an

intrepid reader can dig up a design document.

³ Furthermore, the Windows NT calling convention requires that the return address be

passed in ra, so you can cancel your dreams of using JALR on Windows NT with a

nonstandard return address register.

Bonus chatter: Intrepid reader laonianren dug up some usenet articles that fill in the

background.

The branch-likely instructions were added “only to make it easier to populate the branch

delay slots in loops“: You can put the first instruction of the loop body in the delay slot, and

branch to the second instruction of the loop body. If the branch is not taken, then the

instruction in the branch delay slot is converted to a NOP. (It still consumes a cycle, but

nothing happens during that cycle.)

The branch-likely instructions were deprecated because “conditionally squashing the result

of the delay-slot instruction is a pain in the neck.” Processors are required to implement the

instructions, but they are not required to implement them efficiently.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/#comment-1332685
https://compilers.iecc.com/comparch/article/00-05-006
https://compilers.iecc.com/comparch/article/03-09-094
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

