
1/3

April 9, 2018

The MIPS R4000, part 6: Memory access (unaligned)
devblogs.microsoft.com/oldnewthing/20180409-00

Raymond Chen

Unaligned memory access on the MIPS R4000 is performed with pairs of instructions.

 LWL rd, n+3(rs) ; load word left

 LWR rd, n(rs) ; load word right

This is easier to explain with a diagram rather than with a formula.

n+3(rs) n(rs)

↓ ↓

AA BB CC DD EE FF GG HH

11 22 33 44 rd

LWL rd, n+3(rs)

BB CC DD 44 rd

LWR rd, n(rs)

BB CC DD EE rd

You give the “load word left” instruction the effective address of the most significant byte of

the unaligned word you want to load, and it picks out the correct bytes from the enclosing

word and merges them into the upper bytes of the destination register.

The “load word right” works analogously: You give it the effective address of the least

significant byte of the unaligned word you want to load, and it picks out the correct bytes

from the enclosing word and merges them into the lower bytes of the destination register.

Since the results are combined via merging, you can issue the LWL and LWR instructions in

either order, and together they will load the complete four-byte value.¹ (If the address

happened to be aligned, then both instructions will load the complete word.)

https://devblogs.microsoft.com/oldnewthing/20180409-00/?p=98465

2/3

There are corresponding left/right instructions for storing an unaligned word:

 SWL rd, n+3(rs) ; store word left

 SWR rd, n(rs) ; store word right

These are the counterparts to the load versions. They store the upper and lower part of the

word to the corresponding parts of memory.

For unaligned halfword access, you might be tempted to do this:

 ; Try to load unaligned word unsigned from rs to rd

 ; Does this work?

 LWL rd, n+3(rs) ; load word left

 LWR rd, n(rs) ; load word right

 ANDI rd, rd, 0xFFFF ; keep the lower 16 bits

Unfortunately, this doesn’t work because the n+3(rs) might cross into an invalid page.

Consider the case where the halfword is the very last halfword on its page: If you tried to load

it as a word, you would need to load the first halfword on the next page (to fill the top 16

bits), and that could crash if the next page were invalid.

Instead, you need to perform unaligned halfword access by loading two bytes and combining

them:

 ; Load unaligned word signed from rs to rd

 LB at, n+1(rs) ; load high byte

 LBU rd, n(rs) ; load low byte

 SLL at, at, 8 ; shift high byte into position

 OR rd, rd, at ; combine the bytes

If you want to load an unaligned word unsigned, you would change the first instruction from

LB to LBU .

For the same reason as loading, storing an unaligned word is done by storing the bytes

separately.

 ; Store unaligned word to rd from rs

 SRL at, rs, 8 ; shift high byte into position

 SB at, n+1(rd) ; store high byte

 SB rs, n(rd) ; store low byte

The assembler provides pseudo-instructions for these unaligned memory operations:

3/3

 ULW rs, disp16(rd) ; unaligned load word

 USW rs, disp16(rd) ; unaligned store word

 ULH rs, disp16(rd) ; unaligned load halfword signed

 ULHU rs, disp16(rd) ; unaligned load halfword unsigned

 USH rs, disp16(rd) ; unaligned store halfword

 ; and again for absolute addressing

 ULW rs, global_var ; unaligned load word

 USW rs, global_var ; unaligned store word

 ULH rs, global_var ; unaligned load halfword signed

 ULHU rs, global_var ; unaligned load halfword unsigned

 USH rs, global_var ; unaligned store halfword

Mind you, these pseudo-instructions don’t help you when debugging. The debugger shows

the underlying real instructions.

If you’ve been paying attention, you may have noticed that the ULW rd, disp16(rs)

pseudo-instruction fails if rs and rd happen to be the same register, because the LWL will

damage the base register before it can be used to load the right half. In that case, the

assembler uses this alternate version:

 LWL at, n+3(rs) ; load word left into temporary

 LWR at, n(rs) ; load word right into temporary

 OR rs, at, at ; move to final destination

Okay, next time we’ll look at atomic memory operations.

¹ In versions of the MIPS architecture with load delay slots, there was a special exception for

LWL and LWR : You were allowed to issue them directly after the other, and they would

merge correctly, provided they target different bytes of the same destination register or

update the entire destination.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

