
1/4

April 6, 2018

The MIPS R4000, part 5: Memory access (aligned)
devblogs.microsoft.com/oldnewthing/20180406-00

Raymond Chen

The MIPS R4000 has one addressing mode: Register indirect with displacement.

 LW rd, disp16(rs) ; rd = *(int32_t*)(rs + disp16)

 LH rd, disp16(rs) ; rd = *(int16_t*)(rs + disp16)

 LHU rd, disp16(rs) ; rd = *(uint16_t*)(rs + disp16)

 LB rd, disp16(rs) ; rd = *(int8_t*)(rs + disp16)

 LBU rd, disp16(rs) ; rd = *(uint8_t*)(rs + disp16)

The load instructions load an aligned word, halfword, or byte from the address specified by

adding the 16-bit signed displacement to the source register (known as the “base register”).¹

By convention, the displacement can be omitted, in which case it is taken to be zero.

The plain versions of these instructions sign-extend to a 32-bit value; the U versions zero-

extend.

There are corresponding aligned store instructions.

 SW rs, disp16(rd) ; *(int32_t*)(rd + disp16) = (int32_t)rs

 SH rs, disp16(rd) ; *(int16_t*)(rd + disp16) = (int16_t)rs

 SB rs, disp16(rd) ; *(int8_t*)(rd + disp16) = (int8_t)rs

In all cases, if the effective address turns out not to be suitably aligned, an alignment fault

occurs. Windows NT handles the alignment fault by loading the value using the unaligned

memory access instructions (which we’ll see next time), and then resuming execution. The

overhead of the emulation swamps the cost of having done it correctly in the first place, so if

you know that the address may be unaligned, then you are far better off using the unaligned

memory access instructions instead of having the kernel fix it up for you.

The assembler emulates absolute addressing with the help of the at assembler temporary

register. For example, the pseudo-instruction

 LW rd, global_variable

loads an aligned word from a global variable.

Let A be the address of the global variable, and let

https://devblogs.microsoft.com/oldnewthing/20180406-00/?p=98455

2/4

YYYY = (int16_t)(A & 0xFFFF) and

XXXX = (A − YYYY) >> 16

Then the assembler generates the following two instructions:

 LUI at, XXXX

 LW rd, YYYY(at)

Note that if the bottom 16 bits of the address are greater than 0x8000 , then that results in a

negative value for YYYY , and XXXX will be one greater than the upper 16 bits of the

address.

Another pseudo-instruction is

 LW rd, imm32(rs)

You may want to do this if indexing a global array. A straightforward implementation of the

pseudo-instruction would be

 LUI at, XXXX ; load high part

 ADDIU at, at, YYYY ; add in the low part

 ADDU at, at, rs ; add in the byte offset

 LW rd, (at) ; load the word

but this can be shortened by an instruction by merging the fixed offset YYYY into the

displacement of the effective address calculation in the LW . The result is

 LUI at, XXXX

 ADDU at, at, rs

 LW rd, YYYY(at)

While the assembler emulation is convenient, it may not be the most efficient. If you are

accessing the global variable more than once, or if you are accessing more than one variable

within the same 64KB region, you can share the LUI instruction among them.

For example, suppose global1 and global2 reside in the same 64KB block of memory.

 ; lazy version of global2 = global1 + 1

 LW r1, global1

 ADDIU r1, r1, 1

 SW r1, global2

This expands to

 LUI at, XXXX

 LW r1, YYYY(at)

 ADDIU r1, r1, 1

 LUI at, XXXX

 SW r1, ZZZZ(at)

https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933
https://blogs.msdn.microsoft.com/oldnewthing/20090611-00/?p=17933

3/4

You can factor out the XXXX into a register that you reuse for the entire section of code.

 ; sneakier version of global2 = global1 + 1

 LUI r2, XXXX

 LW r1, YYYY(r2)

 ADDIU r1, r1, 1

 SW r1, ZZZZ(r2)

 ; can keep using r2 to access other variables in the block

In theory, you could even store constants in your data segment, but since loading a 32-bit

constant takes only two instructions at most, you probably won’t bother.

Next time, we’ll look at unaligned access.

¹ In earlier versions of the MIPS architecture, there was a load delay slot: The value retrieved

by a load instruction was not available until two instructions later.

We saw last time that the MIPS architecture supports forwarding of arithmetic

computations. Why can’t it forward memory access?

The memory stage comes after the execute stage. This means that the result of a memory load

in the memory stage cannot be forwarded into the execute stage of the next instruction,

because the memory stage of the first instructions takes place at the same time as the execute

stage of the second instruction. The earliest the result of the load can be consumed is two

instructions later.

That means that in the sequence

 LW r1, (r2) ; load word from r2 into r1

 ADDIU r3, r1, 1 ; r3 = r1 + 1

the ADDIU instruction operated on the old value of r1,² not the value that was loaded from

memory. If you want to add 1 to the value loaded from memory, you need to insert some

other instruction in the load delay slot:

 LW r1, (r2) ; load word from r2 into r1

 NOP ; load delay slot

 ADDIU r3, r1, 1 ; r3 = r1 + 1

The MIPS III architecture removed the load delay slot. On the R4000, if you try to access the

value of a register immediately after loading it, the processor stalls until the value becomes

ready. Sure, the stall is bad, but it’s better than running ahead with the wrong value!

² This is true only if no hardware interrupt occurred. If an interrupt occurred, then the load

would complete during the kernel transition, and then when the kernel resumed execution,

the ADDIU would operate on the loaded value after all. Therefore, the value of the

https://blogs.msdn.microsoft.com/oldnewthing/20180405-00/?p=98445

4/4

destination register of a load instruction should be treated as garbage until the load delay

clears.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

